

Comparative study of enzymatic and chemical denaturation of wheat gluten and their cellulosic nanocomposites

By

2015

Center

Recycling Expo-

Nahla A. El-Wakil Cellulose & Paper Dept. National Research Center Cairo, Egypt

International Project (Imhotep) (2013/2015)

2015

Protein-Based nanocomposites for Food Packaging Academy of Scientific Research and Technology, Egypt & Campus France

Recycling Expo-

Objective

The purpose is to examine the role of nanocellulose (CNC and MFC) as a reinforcing agent on the chemically and enzymatically denatured wheat gluten films.

Recycling Expo-

2015

Introduction

2015

Recycling Expo-

Chemical structure of cellulose (Klemm. et al., 2009)

Nanocellulose

Recycling Expo-

2015

Microfibrillated cellulose

TEM of nanofibers isolated from rice straw (a) and bagasse (b) (Hassan et al., 2010 & 2012)

Cellulose nanocrystals

2015

Recycling Expo-

The nanostructure of (a) bagasse and rice straw (b) (Hassan et al., 2009)

Wheat gluten

Recycling Expo-

2015

GLUTEN (GLIADIN + GLUTENIN)

The structure of wheat gluten

Chemical denaturation of wheat gluten

Development of wheat gluten/nanocellulose/titanium dioxidenanocomposites for active food packaging. Nahla A. El-Wakil, Enas A. Hassan, Ragab E. Abou-Zeid, Alain Dufresne. Carbohydrate Polymers 124(2015) 337–346.

Charcterization

Recycling Expo-

2015

- Scanning electron microscopy (SEM)
- Water sensitivity
 - Contact angle
 - Water vapor uptake (WVU)
 - Water vapor permeability (WVP)
- Mechanical testing
 - Tensile strength and Young's modulus
- Antimicrobial activity

Recycling Expo-2015

Scanning electron microscopy (SEM)

SEM micrographs of surfaces and cross sections of neat WG (a and b), WG/CNC 7.5% (c and d), WG/CNC 12.5% (e and f) and WG/CNC 7.5%/0.6%TiO₂(g and h).

Contact angle

Contact angle of WG, WG / CNC and WG/CNC/ TiO₂

WG/CNC		WG/CNC 7.5%/TiO2	
Sample	Contact angle	Sample	Contact angle
WG 2.5% CNC	45.10 ± 1.18 58.88 ± 0.74	WG/CNC 7.5% 0.2% TiO2	64.04 ± 2.84 67.10 ± 0.11
5% CNC	62.00 ± 0.38	0.4% TiO2	68.86±0.41
7.5% CNC	64.04 ± 2.84	0.6%TiO2	74.63 ± 0.66
10% CNC	75.19 ± 0.25	0.8% TiO2	85.6±2.31
12.5% CNC	78.48 ± 1.18	1.0% TiO2	89.70±0.14

Recycling Expo-

2015

Water vapor uptake test (WVU)

Recycling Expo-

2015

Dependence of WVU on CNC content (a) and TiO_2 content (b).

Water vapor permeability (WVP)

Recycling Expo-

2015

Dependence of WVP on CNC content (a) and TiO_2 content (b).

Mechanical testing

Recycling Expo-

2015

Typical stress-strain curves obtained from tensile tests for neat WG and WG filled with CNC (a) and WG with 7.5% CNC filled with TiO_2 (b).

Antimicrobial activity

The colony-forming units (CFU/ml) and the reduction % of surviving number of the tested bacteria of the coated paper with and without TiO_2 nanoparticles

			S. aureus						E. coli				
						Time of U	VA light e	xposure (h))				
	1/2		1			2		1/2		1		2	
Sampl e	CFU/ml	R (%)	CFU/ml	R (%)	CFU/	ml	R (%)	CFU/ml	R (%)	CFU/ml	R (%)	CFU/ml	R (%)
Blank	2.4×10 ⁵	-	3.7×10 ⁵	-	3.1×1	05	-	3.2×10 ⁵	-	6.0×10 ⁵	-	6.6×10 ⁵	-
I layer	1.0×105	58.3	8.0×10 ⁴	78.4	0		100	2.5×10 ⁵	21.9	2.9×10 ⁵	51.7	1.0×10 ⁵	84.9
II layers	3.7×10 ⁴	84.6	1.0×10 ⁴	97.3	0		100	1.9×10 ⁵	40.6	1.0×10 ⁵	83.8	3.0×10 ⁴	95.5
III layers	2.9×10 ⁴	87.9	3.0×10 ³	98.2	0		100	1.5×10 ⁵	53.1	6.0×10 ⁴	90.0	1.0×10 ⁴	98.5

Enzymatic denaturation of wheat gluten (EWG)

Recycling Expo-

2015

Effect of time on solubility of wheat gluten obtained with different percent of Alcalase enzyme

18

Mechanical testing

Recycling Expo-

2015

Tensile strength of WG/MFC and EWG/MFC films

Water vapor permeability (WVP)

Recycling Expo-

2015

WVP of WG/MFC and EWG/MFC films

Contact angle measurment

Recycling Expo-

2015

Contact angle of EWG/MFC films

WG/MFC

Sample	Contact angle
5 % MFC	30.85
10 % MFC	34.77
15 % MFC	38.22
20 % MFC	39.33
25 % MFC	40.5
30 % MFC	38.4

Scanning electrone microscopy

Recycling Expo-

2015

SEM micrographs of EWG/20% MFC (a and b) and EWG/30% MFC (c and d) surface and cross section.

Conclusion

Recycling Expo-

2015

Filling of chemically and enzymatically denatured wheat gluten with MFC enhanced the mechanical and barrier properties of the prepared nanocomposites. However, this enhancement is significant in case of chemical denaturation specially for MFC content > 15%.

Attempts to develop thermoplastic films from wheat gluten to replace synthetic polymer based films need more extensive studies to achieve the target

Acknowledgement

Recycling Expo-

2015

- I would to acknowledge my colleagues:
- Dr. Enas A. Hassan assistant prof. and Dr. Ragab Abou-Zeid Researcher.
- The authors acknowledge the Academy of Scientific Research and Technology, Egypt (National Research Center) & Scientific sector of the French institute of Egypt (Grenoble Institute of Technology, Pagora, Grenoble , France) for their financial support.

