

SEASONAL COLOR SPECTROPHOTOMETRIC VARIATION OF DUST SAMPLE WITHIN KUWAIT

1st International Conference on Natural Hazards and Disaster Management June 1-3, 2017 Osaka, Japan

Mustafa Ahmad Al-Shamali Kuwait institute for scientific research Phone: 96524956072 Mobile: 96590980915 E-mail <u>mshamali@kisr.edu.kw</u> E-mail jader ba@yahoo.com

Out line

- Introduction.
- Sample collection (inside)
- Sample collection (outdoor)
- Spectroscopy background
- Sample for FT-MIR
- UV-VIS
- FT-NIR
- Indoor dust result (Electron microscope (EDS))

Out line

- Indoor result FT-MIR
- UV-VIS Result out door
- FT-IR Result out door
- Fast model on FT-NIR out door
- Distance between spectra out door
- Indoor dust result (Electron microscope (EDS))
- Indoor result FT-MIR
- UV-VIS Result out door

Out line

- FT-IR Result out door
- Fast model on FT-NIR out door
- Distance between spectra out door
- FT-NIR Result
- Data discussion for indoor
- Out door discussions
- Conclusion
- reference

Introduction

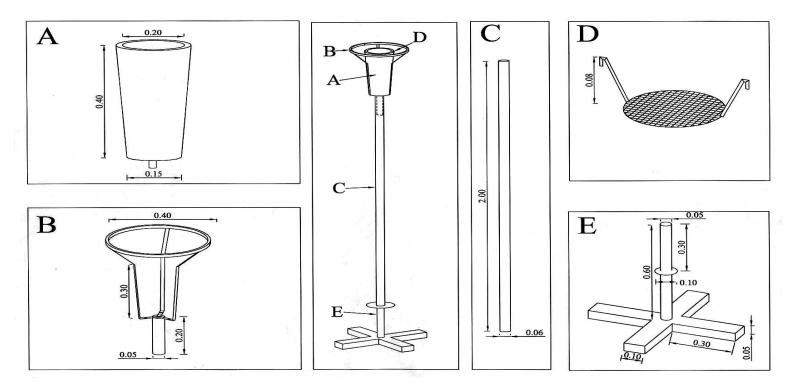
- 1- collecting sample from the outside climate and indoor one is one way to understand the surrounding.
- 2- Testing the sample in different technique to get information on the nature of environment.
- 3- suggest solution for the problems and take action for protection if possible.

Sample collection (inside)

Air condition duct diber

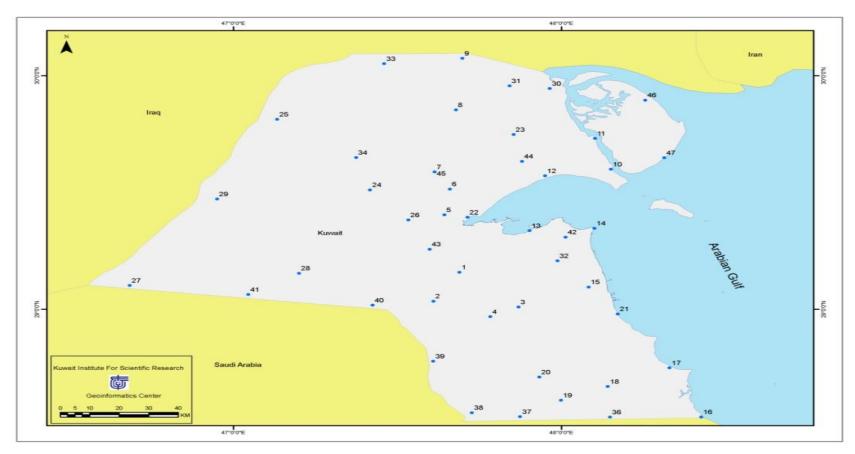
Sample collection (inside)

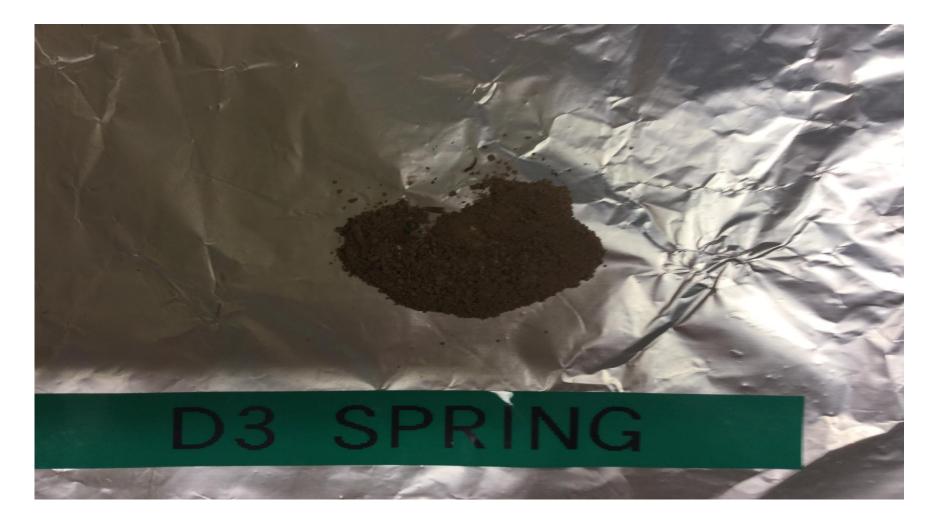
Dust removed from the dibber



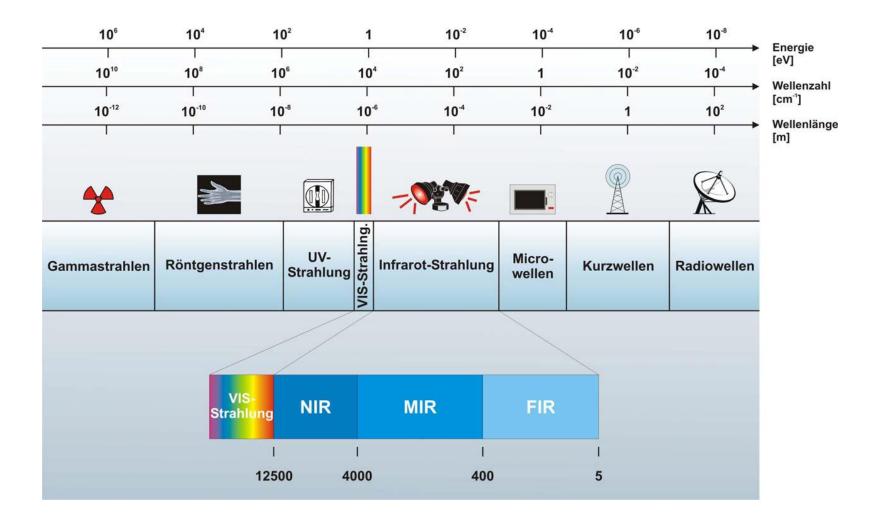
Sample collection (inside)

Dust removed from the dibber


Dust collector (source: Reheis, 1 995 with some modifications).

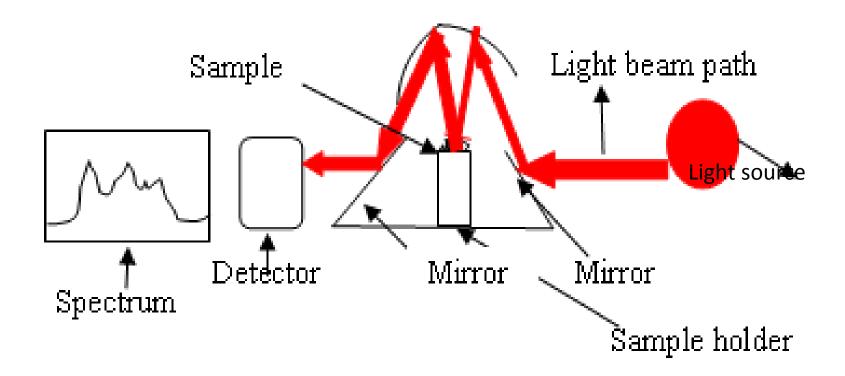

Dust collector (source: Reheis, 1 995 with some modifications).

Dust collectors in Kuwait

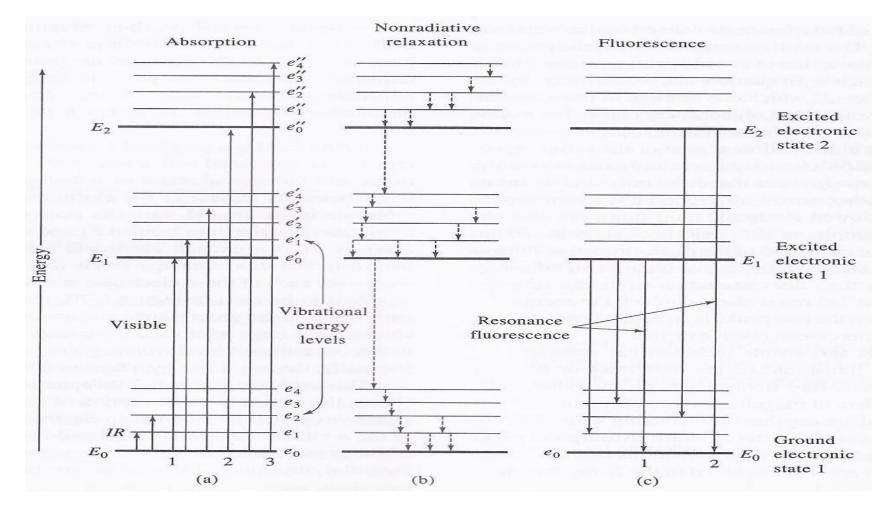


Spectroscopy background

- Indoor sample analysis by microscope and FT-MIR
- Outdoor sample analysis by FT-MID,UV-VIS, and FT-NIR



Spectroscopy background



Spectroscopy background Defuse reflectance

Spectroscopy Background Defuse Reflectance

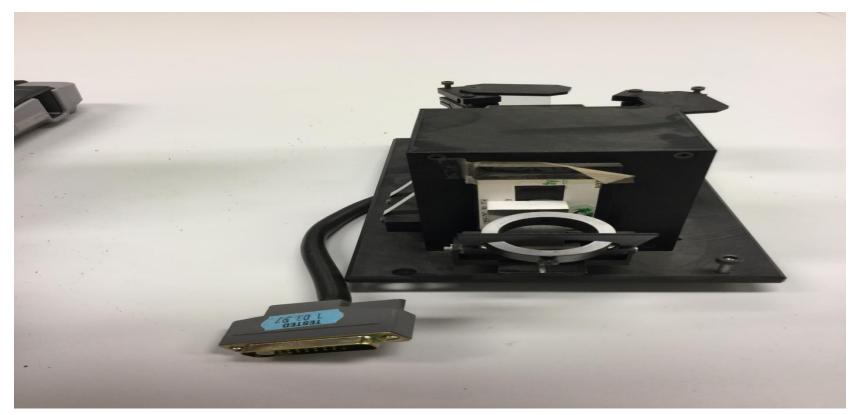
Sample for FT-MIR

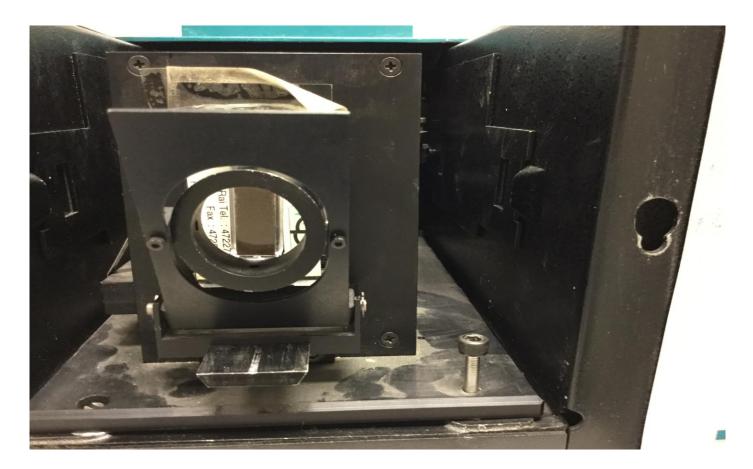
KBr Potassium bromide is reference material

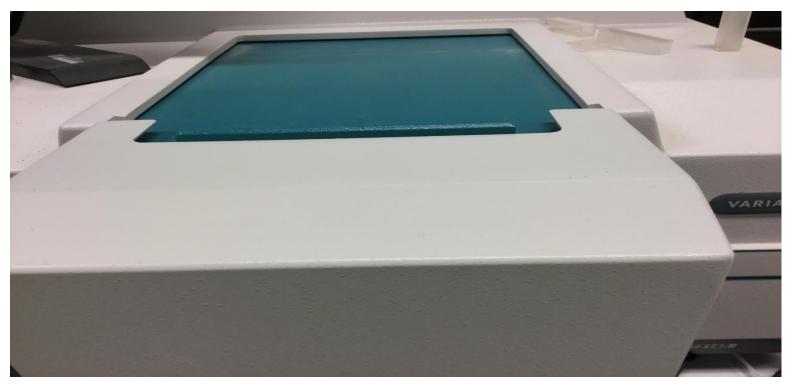
Sample for FT-MIR

Diffuse reflectance accessory for FT-MIR

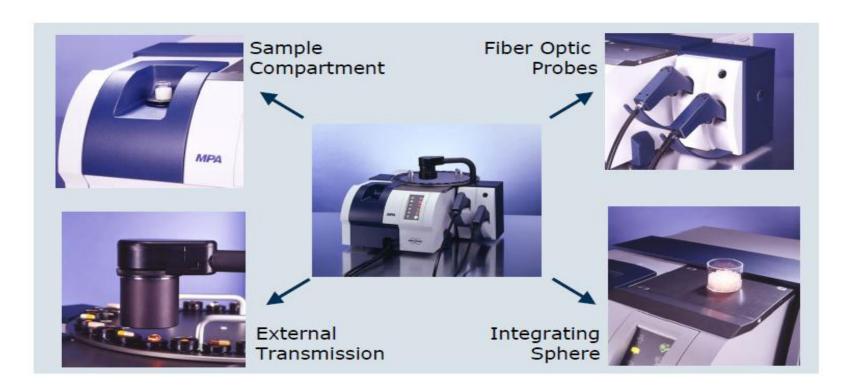
Sample for FT-MIR


Sample Holder for the FT-MIR diffuse reflectance

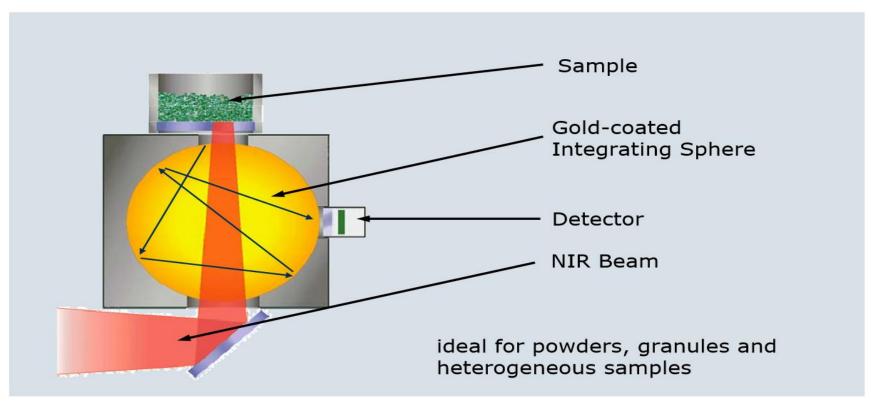

Diffuse reflectance reference for UV-VIS


Diffuse reflectance for UV-VIS

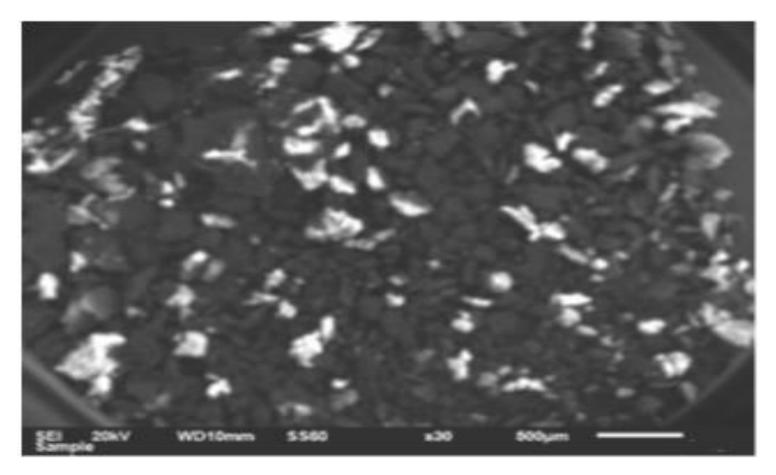
Diffuse reflectance for UV-VIS



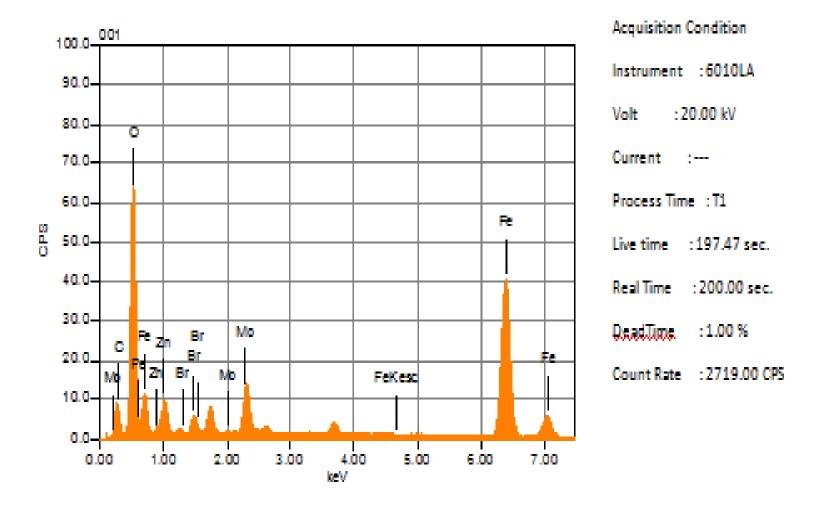
Covering the sample compartment. Instrument UV-VIS effect only



FT-NIR

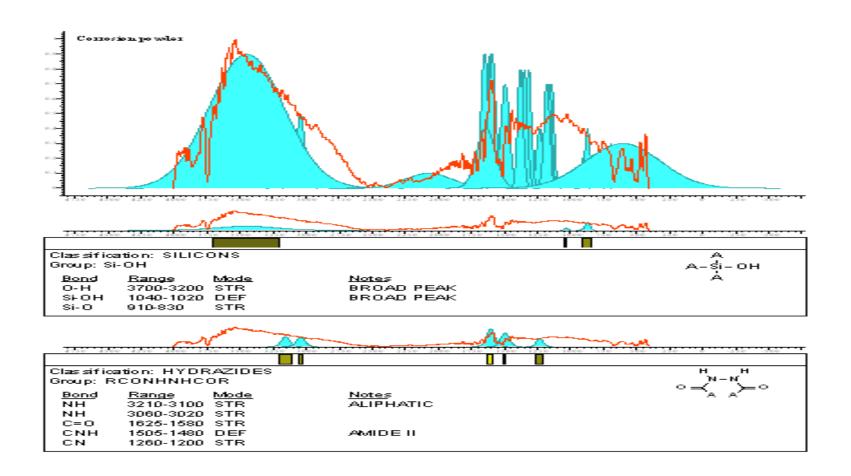

FT-NIR

FT-NIR Diffuse reflectance



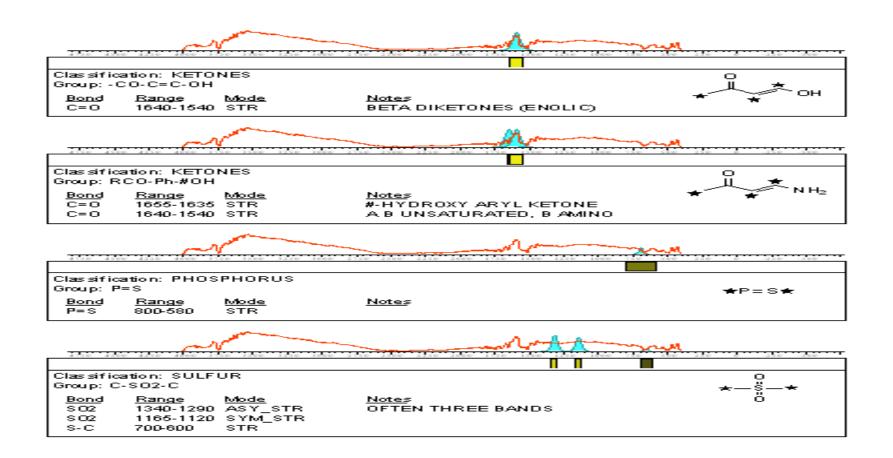
Indoor dust result (Electron microscope (EDS))

Indoor dust result Indoor dust result (Electron microscope (EDS))


KISR

Indoor dust result Indoor dust result (Electron The KISR microscope (EDS))

Chemica	l formula	mass%	mol%	Cation	Sigma	Net	K ratio	Line
с	19.71	61.90	0.00	0.03	40508	0.00504	58	К
0								
ξeΩ	56.01	29.41	16.28	0.09	547946	0.29686	64	К
ζοΩ*	8.31	3.85	2.13	0.07	40712	0.04237	88	К
Br*	3.15	1.49	0.00	0.05	43532	0.01174	40	L
MoO3*	12.82	3.36	1.86	0.08	139343	0.03997	35	L
Total	100.00	100.00	20.28					



Indoor result FT-MIR

Indoor result FT-MIR

UV-VIS Result out door

Table C1 light absorption of the dust collector in different seasons.

Waves NO	900-740n	m	740-62	5nm	62 590		590-56	5nm	565-52	0nm	520-500	Onm	500-43	0nm	430-380nm		380-190nm	
Light order	IR		Rec	1	Ora	nge	Yello	ow	Gree	en	Cya	n	Blu	e	Violet		Ultraviolet	
Units Dust collector	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)	ABS	Wave number (nm)
D1, 29-12-10	0.019	892	0.0083	732	0.01	609	0.0071	584	0.009	523	0.0095	508	0.01	477	0.0096	423	0.0088	339
D-1, 28-10-2010	7.00E-04	892	-0.016	732	-0.02	592	-0.017	581	-0.017	560	-0.019	513	-0.019	484	-0.019	385	0.0017	191
D-1, 28_6_2010	0.038	900	0.0088	647	0.01	590	0.009	564	0.012	520	0.0126	514	0.015	445	0.0156	393	0.0248	348
D-2 28-03-2010	0.018	897	0.0037	669	0	617	0.0024	574	0.004	523	0.0046	512	0.005	491	0.0044	383	0.0115	341
D-2 28-10-2010	-0.042	895	-0.058	740	-0.06	619	-0.06	568	-0.059	528	-0.059	507	-0.057	386	-0.057	346	-0.057	198
D-5 1_7_2010	0.046	895	0.0207	630	0.02	591	0.0233	568	0.027	528	0.0287	500	0.033	450	0.0434	341	0.0448	324
D-6 1-3-2010	0.031	900	0.0159	679	0.02	590	0.016	568	0.019	529	0.0189	509	0.022	447	0.0218	386	0.0237	347
D-8 3-3-2010	0.048	900	0.0164	716	0.01	596	0.0139	587	0.015	526	0.0141	515	0.015	477	0.0139	422	0.0252	190
D-10 29-6-2010	0.019	896	-0.002	667	0	624	-0.002	566	- 1.00E- 03	520	-4.00E- 04	501	4.00E- 04	469	- 4.00E- 04	429	0.0004	348

UV-VIS Result out door

Continue. Table C1 light abso	Continue. Table C1 light absorption of the dust collector in different seasons.																	
D-10 29-10-2010	0.026	888	0.0195	717	0.02	598	0.0182	570	0.02	522	0.021	506	0.021	485	0.0214	391	0.0208	374
D-12 29-10-2010	0.024	884	0.0181	690	0.02	620	0.0155	582	0.015	521	0.0153	505	0.015	485	0.013	419	0.0111	377
D-13 31_10_2010	-0.009	900	-0.026	735	-0.03	603	-0.03	587	-0.032	560	-0.036	516	-0.037	493	-0.04	416	-0.017	193
D-13 31-03-2010	0.015	897	-0.002	735	0	617	-0.003	586	#####	523	######	502		482	-	388	0.0067	341
													04		2.00E- 04			
D-13 31-12-10-2010	0.03	895	0.015	668	0.01	592	0.0152	574	0.018	528	0.0195	505	0.021	431	0.0215	391	0.0221	377
D-15 28-12-10-2010	0.018	899	0.0099	688	0.01	624	0.008	582	0.009	529	0.0099	503	0.01	482	0.0091	419	0.0075	377
D-16 30-6-2010	0.019	892	0.0098	657	0.01	619	0.0092	567	0.012	530	0.0124	507	0.014	431	0.0133	388	0.0186	343
D-16 30-10-2010	0.053	900	0.0254	717	0.02	624	0.0233	588	0.024	523	0.0243	518	0.025	480	0.0236	419	0.0221	378
D-18 02-03-2010	0.038	900	0.0179	634	0.02	593	0.0184	566	0.021	529	0.0217	503	0.024	448	0.026	385	0.0275	347
D-19 24 02-03-2010	0.026	900	0.007	708	0.01	594	0.0063	579	0.009	526	0.0092	502	0.011	472	0.0111	397	0.0206	347
D-19 30-10-2010	-6.00E-04	900	-0.016	733	-0.02	603	-0.016	587	-0.016	553	-0.017	504	-0.017	484	-0.017	416	0.0063	190
D-20 2-3-2010	0.029	891	0.0176	669	0.02	608	0.0396	566	0.018	529	0.0177	502	0.018	411	0.0192	458	0.0192	347
D-28 30-12-2010	0.037	897	0.0167	630	0.02	590	0.0175	565	0.02	522	0.0214	501	0.023	435	0.0243	389	0.0263	349
D29 4-3-2010	0.026	895	0.0077	646	0.01	590	0.0087	565	0.012	522	0.0134	501	0.015	431	0.0166	396	0.0239	336

UV-VIS Result out door

D-33-31-10-2010	0.03	899	0.0039	736	0	621	0.0021	524	0.003	516	0.0026	516	0.003	457	0.0018	398	0.0043	347
D33 31-3-2010	0.024	893	0.0244	625	0.03	590	0.0279	566	0.034	521	0.0352	501	0.04	431	0.0432	380	0.0483	343
D-33 31-12-2010	0.032	893	0.0075	730	0.01	624	0.0065	565	0.008	522	0.009	503	0.009	464	0.0089	426	0.0095	343
D35 4-3-2010	0.04	899	0.0266	625	0.03	590	0.029	567	0.034	521	0.0352	502	0.039	431	0.0402	396	0.0472	343
D-36 24 2-3-2010	0.021	891	0.0079	736	0.01	622	0.0057	589	0.006	546	0.0061	514	0.007	477	0.0059	385	0.0169	347
D-38 30-3-2010	0.041	895	0.0159	717	0.02	605	0.0148	578	0.017	532	0.0177	503	0.02	462	0.0187	400	0.0187	341
D-38 30-12-2010	0.027	898	0.0134	643	0.01	599	0.0142	565	0.017	525	0.0179	509	0.021	463	0.0213	395	0.0226	345
D-40 2-3-2010	0.024	887	0.0107	652	0.01	595	0.0106	573	0.014	531	0.0148	501	0.017	457	0.0179	397	0.0191	341
D-41 30-6-2010	0.039	893	0.012	651	0.01	592	0.0123	569	0.015	528	0.0167	501	0.02	445	0.0202	381	0.0215	341
D-41 30-9-2010	0.031	887	0.015	651	0.01	595	0.0146	569	0.017	531	0.0179	503	0.02	445	0.0207	398	0.021	365
D-42 29-10-2010	-0.034	896	-0.059	733	-0.06	621	-0.063	576	-0.061	528	-0.061	506	-0.061	471	-0.061	411	-0.059	193
D-42 29-12-2010	0.031	895	0.0146	649	0.01	615	0.0142	565	0.017	522	0.0175	501	0.019	453	0.0203	402	0.0208	345
D43 1-3-2010	0.034	899	0.0034	698	0	602	0.003	570	0.006	521	0.006	514	0.007	484	0.0066	396	0.0149	342
D-43 29-9-2010	0.031	887	0.0133	651	0.01	606	0.0134	569	0.016	527	0.0172	501	0.019	441	0.0211	381	0.0216	346
D-43 29-10-2010	0.026	887	0.0123	652	0.01	621	0.0116	566	0.012	528	0.0129	504	0.014	461	0.0136	381	0.0131	351
D-43 29-12-2010	0.024	894	0.0132	670	0.01	592	0.0138	565	0.017	525	0.0174	501	0.019	447	0.0204	398	0.023	346
D-43_B 29-9-2010	0.042	899	0.0175	710	0.02	620	0.0173	569	0.02	523	0.0202	507	0.022	439	0.0223	387	0.0233	365
D44 1-3-2010	0.036	899	0.0125	652	0.01	602	0.0132	565	0.016	521	0.0168	514	0.02	457	0.0202	396	0.0269	342
D-44 29-6-2010	0.703	815	0.6759	740	0.65	619	0.6502	569	0.654	539	0.6521	519	0.657	476	0.6575	380	1.3426	200
D-44 29-9-2010	0.039	899	0.0163	710	0.02	591	0.0167	574	0.02	523	0.0206	518	0.023	441	0.0235	385	0.0234	372
D-44 29-10-2010	0.023	898	0.0031	658	0	611	0.0021	579	0.002	528	0.0028	504	0.004	453	0.0037	381	0.0027	377
D-45 1-3-2010	0.034	888	0.021	628	0.02	590	0.0221	566	0.025	524	0.0255	509	0.028	447	0.0297	381	0.0319	347

Continue. Table C1 light absorption of the dust collector in different seasons.

FT-IR Result out door

No.	Function Group	Compound	Bounds	Peak Reg	ions (c	m^{-1})
1.0.		compound	Dounds	From		То
1	Alkanes	R'-CH ₂ -R"	СН	2936	То	2916
1	Aikaies	R -CH2-R	CH	2863	To	2843
			CH	1485	To	1445
		R(CH ₂) ₄ -C	CH	2936	To	2916
		10(0112)4 0	CH	2863	To	2843
			CH	1485	To	1445
			CC	750	To	720
		RCH ₃	CH	2972	To	2952
		100113	CH	2882	To	2862
			CH	1475	То	1435
			CH	1380	То	1385
2	Ketones	RCO-Ph#NH ₂	C=O	1655	То	1635
		4C ring K	C=O	1785	То	1765
		Fused ring	C=O	1655	То	1635
3	Nitrite	R-O-N=O	N=O	1681	То	1648
			N=O	1625	То	1605
			N-O	814	То	751
4 5	Phosphorus	P=S	P=S	800	То	580
5	Silicon	Si-OH	O-H	3700	То	3200
			Si-OH	1040	To	1020
			Si-O	910	То	830
		Si-O-Si	Si-O-Si	1020	То	1010
		Si-O-C	Si-O-C	1100	То	1000
		Si-O-C	Si-O-C	990	То	945
		Si-Cl	Si-Cl	550	То	470
6	Sulphur	S=S	S=S	500	То	400
		R-SO ₃ H ₃ O	H ₃ O	2800	То	1650
			SO ₃	1230	То	1120

Table 1. Collector D-3, December 2010

FT-IR Result out door

Table 2 Sample D-3 28-3-2010

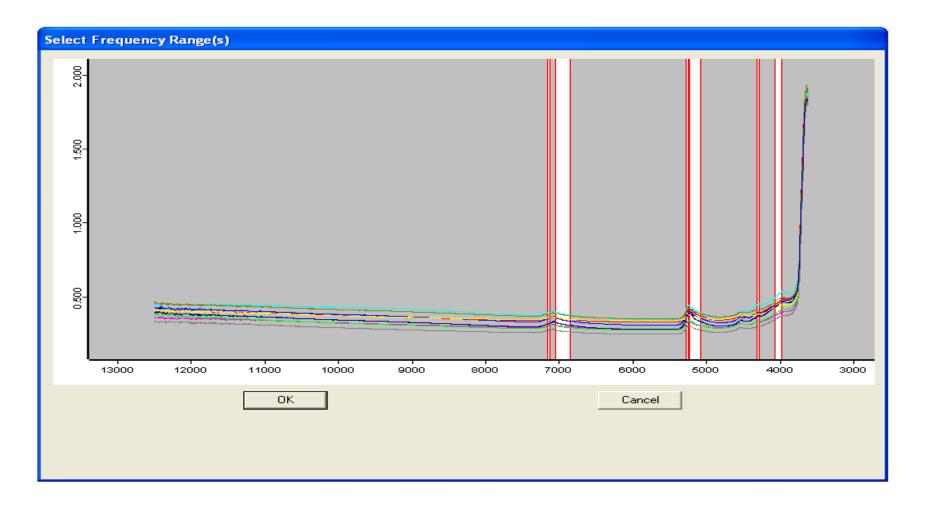
No	Function group	Compound	Bounds	Peak regions (cm ⁻		(cm^{-1})
				From		То
1	Ethers	4-Ring ETH	С-О-С	1035	То	1020
			C-O-C	990	То	975
		6-Ring ETH	С-О-С	1110	То	1090
			С-О-С	820	То	805
2	Halogens	C-Br	C-Br	600	То	500
		C-I	C-I	610	То	485
3	Ketones	Ph-CO-Ph	C=0	1670	То	1660
		RCO-Ph#NH ₂	C=O	1655	То	1635
		C=C-CO-C=C	C=O	1670	То	1663
		Quinones	C=O	1655	То	1635
4	Phosphorus	P=S	P=S	800	То	580
5	SILICONS	Si-O-Si	Si-O-Si	1020	То	1010
6	Sulphur	C=S	C=S	1200	То	1050
		S-S	S-S	500	То	400
		R-SOOH	О-Н	2790	То	2340
			S=O	1090	То	990
			S-O	870	То	810

FT-IR Result out door

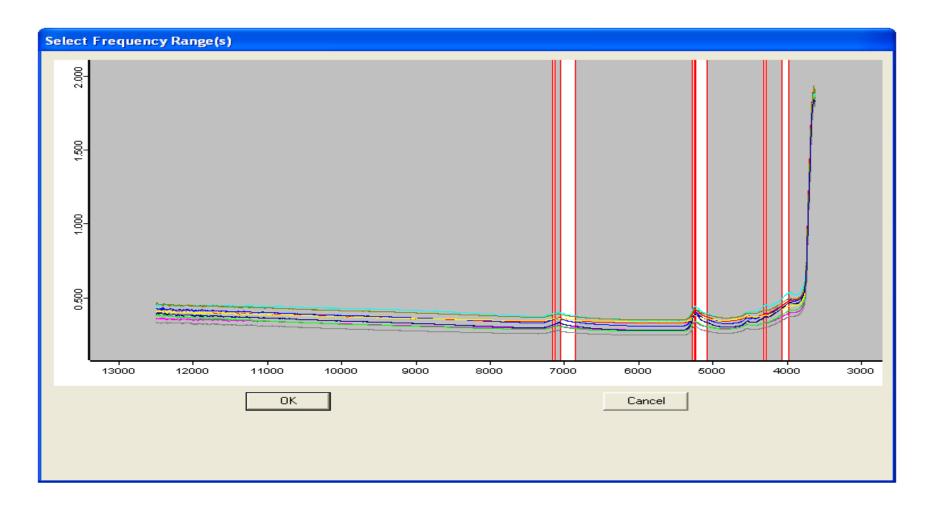
No	Function Group	Compound	Bounds	Peak Reg	Peak Regions (cm ⁻¹)		
				From		То	
1	Alkanes	Ph-CH ₃	CH	2930	То	2920	
			CH	2870	То	2860	
		R'-CH ₂ -R"	CH	2936	То	2916	
			CH	2863	То	2843	
			CH	1485	То	1445	
2	Ethers	4-Ring ETH	С-О-С	1035	То	1020	
			C-O-C	990	То	975	
		6-Ring ETH	С-О-С	1110	То	1090	
			C-O-C	820	То	805	
3	Halogens	C-Br	C-Br	600	То	500	
		C-I	C-I	610	То	485	
4	Ketones	Ph-CO-Ph	C=O	1670	То	1660	
		RCO-Ph#NH ₂	C=O	1655	То	1635	
		C=C-CO-C=C	C=O	1670	То	1663	
		Quinones	C=O	1655	То	1635	
5	Silicon	Si-O-Si	Si-O-Si	1100	То	1000	
		Si-F	Si-F	920	То	820	
		Si-OH	O-H	3700	То	3200	
			Si-OH	1040	То	1020	
			Si-O	910	То	830	
6	Sulphur	C=S	C=S	1200	То	1050	
		S-S	S-S	500	То	400	
		R-SOOH	О-Н	2790	То	2340	
			S=O	1090	То	990	
			S-O	870	То	810	

Table 3. Sample D-3 28-September-2010

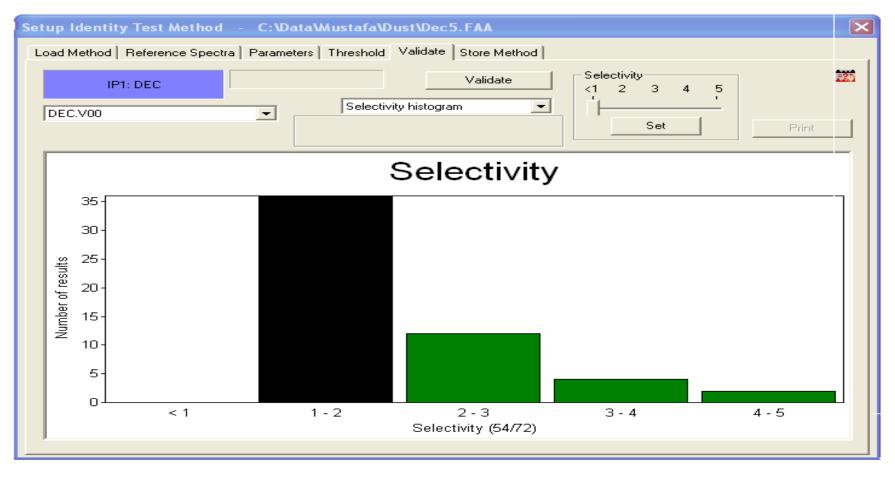
- 1. FT-NIR Indent model a data base for the dust collector is produced.
- 2. The Data base contain all the information of the dust in certain time in the year.
- 3. The Data base will reduce the time and save money for sample testing.
- 4. The data base is updated and increase each time new sample is tested

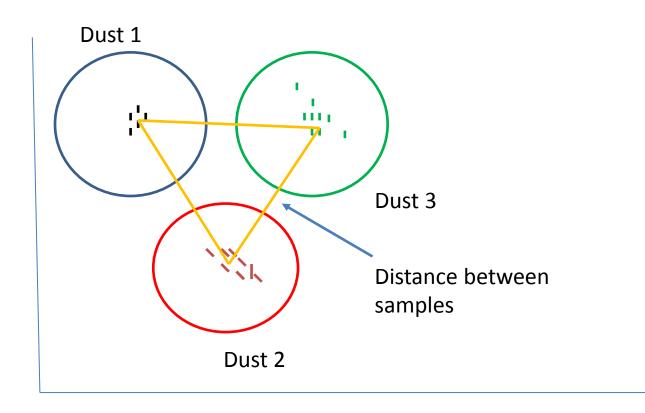


Setup Ide	enti	ty Te	st Method	- C:\Data\Mustafa\D	ust\Dec 5. FAA		
Load Me	thod	Refe	erence Spectra	Parameters Threshold	Validate Store Method		
	IF	P1: DE	C	Optio	ons	Set Sub	Libraries
	Add	Spect	ra for New Gro	Add	Spectra to Sel. Group	Assign	Classes
		ID	Path	File Name	Sample Name	Group Name	Sub Library
1	+	1			D20 Alwafra animal	D20	
2	+	2			D48 29-12-2010 0.880		
3	+	3			D-33 31-12-10 0.3161;		
4	+	4			D-1 28-12-2010 0.4231		
<u>5</u> 6	+	5			D32 Desert paveme D-13 31-12-2010 0.434		I I I
7	+	6				D-13 D-15	I I
8	+	8				D-15 D-27	I
9	+	9			D-28;Poultry mid wa		



Setup Iden	tity Test Met	hod - C:\D	ata\Mustafa\Dust\Dec5.FAA	×
Load Metho	d Reference S	Spectra Parame	eters Threshold Validate Store Method	
Preproce				25
	/ector normalizal	tion	•	
- Regions				<u> </u>
1	from 7151.09	to 7120.24	Interactive Region Selection	
2 3 4 5	7047 5261.11 5218.7 4304.54	6838.7 5237.96 5068.3 4277.54	Clear Selected Regions	
Method	1052.02	2057.4	Calculate thresholds	
Stan	dard ways use lowest	IP level	Start Calculation	
View spo		ocessed Spectra		




Setup Identity Test Method - C:\Data\Mustafa\Dust\Dec5.FAA 🛛 🔀						
Load Metho	od Reference Spectra Para	meters Threshold Valid	ate Store Method			
DEC.V00	IP1: DEC	Selectivity rep	Validate	Selectivity <1 2 3 4 5		
				Set	Print	
	ID Group1	Group2	IP-Level	s	Threshold1	
1	1 D20	D-15	IP1: DEC	1.284489	0.039432	
2	2 D48	D20	IP1: DEC	2.409466	0.009938	
3	3 D-33	D32	IP1: DEC	1.392371	0.015837	
4	4 D-1	D-27	IP1: DEC	1.172009	0.008418	
5	5 D32	D-13	IP1: DEC	1.277793	0.086090	
6	6 D-13	D32	IP1: DEC	1.277793	0.014473	
7	7 D-15	D20	IP1: DEC	1.284489	0.013483	
8	8 D-27	D-1	IP1: DEC	1.172009	0.008201	
9	9 D-28	D20	IP1: DEC	1.460402	0.013193	
<	П	II			>	

Distance between spectra out door

FT-NIR Result

Result of IDENT evaluation:

Sample name: D33 Desert pavement with patches of drift sands and granule ripples:Ritqa;Mustafa A Al-Shamali;29.4-2014;july 2010 bag 1.7-2010 lable;colour;Du Sample: C:Data/Mustafa/Dust2014_4_29 D33 Desert pavement with patches of drift sands and granule ripples_Ritqa_Mustafa A Al-Shamali_29.4-,0 Date and time (measurement): 29.04/2014_09:37:21.069 (GMT+2) Method file: C:Data/Mustafa/DustSUMMER2.FAA

Hit no.	Sample name	Hit qual.	Threshold	Group
1	D33 Desert pavement with patches of drift	0.00003	0.00006	D33
2	D-1 protected area;Kabd (KISR Expirement	0.00018	0.00005	D-1
3	D-10 sbkha and drift sands;Sabiya (close to	0.00057	0.00005	D-10
4	D-25 active sand sheets;South Buffer zone	0.00065	0.00010	D-25
5	D-5 restricted area;Mutla (abduli road);Mustafa	0.00088	0.00012	D-5

IDENTIFIED AS D33

FT-NIR Result

Result of IDENT evaluation:

Sample name: D-10 Sabkba and Drift sand; Sabiya(close to the Bubiyan bridge); Mr. Mustafa A Al-Shamali; 21-4-2014; Autumn October collection; colour; Dust Sample: C:Data Mustafa Dust 2014 4 21 D 10 Sabiha and Drift sand Sabiya close to the Bubiyan bridge) Mr. Mustafa A Al-Shamali 21.4.2014.0 Date and time (measurement): 21/04/2014 09:52:11.065 (GMT+2) Method file: C: Data Mustafa Dust OCTOBER6.FAA

Hitno.	Sample name	Hit qual.	Threshold	Group
1	D-10 Sabkha and Drift sand;Sabiya(close to the	0.00006	0.00006	D-10
2	D1 Protected Area;Kabd Station (KISR	0.00047	0.00005	D1
з	D-27 Desert Pavement, few Halaxylon	0.00145	0.00068	D-27
4	D-20 Active sand sheets:Wafra Animal	0.00296	0.00088	D-20

IDENTIFIED AS D-10

FT-NIR Result

Result of IDENT evaluation:

Sample name: D20 Active sand sheet;Wafra Animal Production;Mustafa A Al-Shamali;27-4-2014;2-3-2010 march collection ;colour;Dust Sample: C: Data Mustafa Dust 2014 4 27 D20 Active sand sheet Wafra Animal Production_Mustafa A Al-Shamali_27-4-2014.0 Date and time (measurement): 27/04/2014 12:24:21.214 (GMT+2) Method file: C: Data Mustafa Dust March2.FAA

Hit no.	Sample name	Hit qual.	Threshold	Group
1	D20 Wafra animal production (jawakheir)	0.06137	0.09116	D20
2	D-27 30-3-2010 0.5045;Salmi Boarder Zone;Ms.	0.16761	0.05165	D-27
3	D-13 31-3-2010 0.4822;KISR Main Building	0.26637	0.01200	D-13
4	D-6 1-3-2010 0.4328;North Mutla (Abduli Road)	0.34028	0.02974	D-6
5	D-31 Sand dunes and nabkhs;Um	0.37724	0.01132	D-31

IDENTIFIED AS D20

Ì

FT-NIR Result

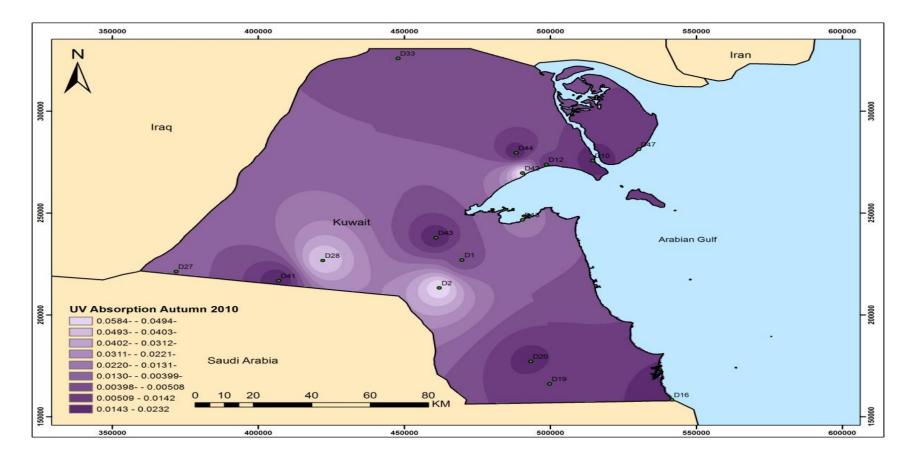
Result of IDENT evaluation:

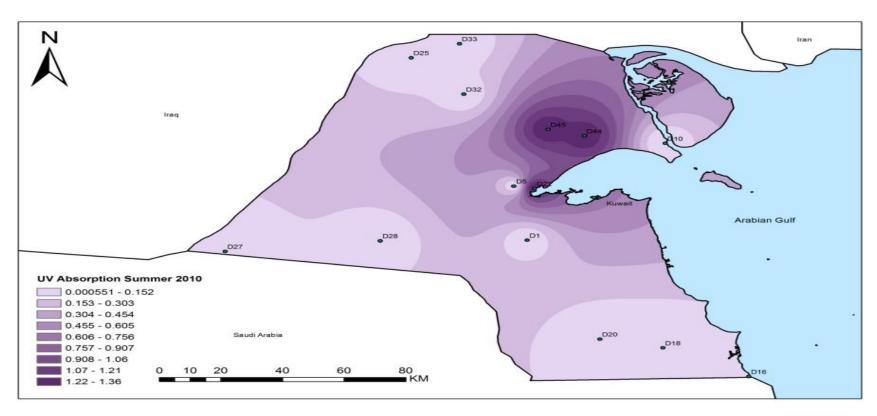
Sample name: D32 Desert pavement with patches of drift sands and granule ripples;Homa;Mustafa A Al-Shamali;8:5-2014;December 2010 31:12:2010;colou Sample: C:Data Mustafa Dust 2014 5 8 D32 Desert pavement with patches of drift sands and granule ripples_Homa_Mustafa A Al-Shamali 8:5-2.0 Date and time (measurement): 08:05:2014 12:35:53.721 (GMT+2) Method file: C:Data Mustafa Dust Dec5.FAA

Hit no.	Sample name	Hit qual.	Threshold	Group
1	D32 Desert pavement with patches of drift	0.07959	0.08609	D32
2	D-15;KISR Petrolum Center (Al-Ahmadi) Urban	0.07992	0.01348	D-15
3	D-27;Homa;Mustafa A	0.10636	0.00820	D-27
4	D20 Alwafra animal medical 30-12-2010 2.5889	0.11170	0.03943	D20
5	D-33 31-12-10 0.3161;Ritqa;Ms. Safaa	0.11450	0.01584	D.33

IDENTIFIED AS D32

Data discussion for indoor


- The sample has high amount of curded Iron.
 And other materials like sulphur, hydrocarbons, silicon compounds and extra.
- 2. The duct should be isolated to prevent it from any reaction
- The condition filter material should be reselected and the replacing time should be monitored.


- 1- The ability of dust to absorb light is vary from season to season for the same dust collector.
- 2- The chemical content of the dust is vary from season to season for the same collector.
- 3- The dust help in absorption the Ultraviolet light that has relation with cancer.
- 4- the dust has the ability to absorb infrared light that has relation with heat.

- 1. The chemical content effect the colour of the dust.
- 2. The chemical content of the dust will information about any activity that cause any component to be present in the collector.

UV-Absorption in Autumn 2010

UV-Absorption in summer 2010

conclusion

- 1- The monitoring the outdoor and indoor dust and air is very important to understand what happened in the surrounding.
- 2- taking action is very is very important before problems become big.
- 3- The content of the dust vary depend on the culture area and the seasons.
- 4- The changes in dust content can be observe by eye however it need to be tested.

references

- D. A. Skoog; F. J. Holler; and T. Nieman. <u>Principles of</u> <u>Instrumental Analysis, Fifth Edition</u> Harcourt Brace & company.
- B.J.Clark; T.Frost; and M. A. Russel. <u>UV spectroscopy</u> <u>Techniques, Instrumentation, Data Handling.</u> Chapman & Hull 2-6 Boundary Row. London. UK.
- J
 Örg-Peter Conzen <u>Multivariate Calibration</u>.Bruker optik GmbH.
- D.R. Lide. <u>Handbook of Chemistry and Physics^{72nd} Edition.</u> 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL. 33487. USA. CRC Press.
- M. AL-SHAMALI, S. AL-AWADHI AND N. AL-DOUSARI, <u>SEASONAL COLOR</u> <u>SPECTROPHOTOMETRIC VARIATION OF DUST SAMPLE WITHIN KUWAIT</u> KISR EC058G 2016

Acknowledgment

My Acknowledgment to

- team who work with me on EC058G research activity.
- <u>Conference Series Ltd</u>
- Natural Hazards and Disaster Management