Sequestration of Atmospheric Carbon Dioxide as Inorganic Carbon under Semi-Arid Forests

Murray Moinester, Joel Kronfeld, Israel Carmi Tel Aviv University

World Conference on Climate Change, October 24-26, 2016, Valencia, Spain

Murray Moinester | Prof. (Emeritus) of Physics, Tel Aviv University

Joel Kronfeld | Prof. (Emeritus) Geosciences, Tel Aviv University

Israel Carmi | Geosciences Researcher, Tel Aviv University

melting icefields, more forest fires, reduced food supply, etc.

• Burn Less Fossil Fuels. (difficult to achieve)

 Nuclear power, develop safer reactors, deal more effectively with nuclear wastes. ("Greens" opposition)

• Climate engineering projects proposed for *carbon dioxide removal* (CDR) and *solar radiation management* (SRM). (large, expensive, controversial)

• Carbon reduction & storage via forestation. (low cost & low tech)

- Leaves inhale CO₂. Roots in semi-arid regions are deep.
 Exhale CO₂ into USZ at high partial pressure
- CO₂ + H₂O → dissolved HCO₃⁻ bicarbonate, combines with soil Ca⁺², precipitates CaCO₃ calcite.
- Trees in semi-arid regions sequester atmospheric CO₂ long term underground as stable calcite, low rainfall
- These trees also sequester atmospheric CO₂ short term, as organic biomass.
- But burning, decomposition of biomass reinject CO₂ into the atmosphere.

Yatir forest, semi-arid, ~world's driest. Beginning in 1966, Keren Kayemeth Lelsrael – Jewish National Fund foresters planted four million trees at Yatir. It is now the largest forest in Israel, covering 28 km² (6920 acres or 2,800 hectares). *Extrapolation: Global semi-arid forestation may remove* ~2.6 *billion tons of atmospheric CO*₂ *per year.*

Global distribution of semi-arid (Steppe, 17.7%) regions

Soil gas dissolves into the soil moisture, forms carbonic acid.

(1) $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

Carbonic acid dissolves pre-existing soil calcite and releases calcium ions. (2) $CaCO_3 + H^+ \leftrightarrow Ca^{+2} + HCO_3^{-1}$

Released Ca⁺² combines with the DIC, and precipitates calcite. (3) Ca⁺² + 2HCO₃⁻ \rightarrow CaCO₃ + CO₂ + H₂O

Eq. 3 (idealized) implies no net sequestration. Our isotopic data show net sequestration because: (a) most CO_2 from Eq. 3 does not return to atmosphere, (b) many other cation sources contribute to Eq. 3, from silicate weathering, desorption of Ca⁺² from clay, gypsum, sea spray, etc.

Yatir Plants

Nizzanim Plants

Depth (cm)	DIC (mmol C L ⁻¹)
30-60	4.5
60-90	3.4

 CO_2 from roots combines with soil water of unsaturated zone (USZ) to form DIC, comprised mainly of HCO_3^- bicarbonate. DIC concentration decreases with depth, as water flows down, due to $CaCO_3$ precipitation into USZ. Seen easily for plants with shallow roots, not tree roots.

Yatir forest soil cores to 4.5 meters

- Measure CO₂ precipitation rate (into CaCO₃) per cm per Liter of sediment (L_s) from decrease per cm of DIC (~1.6 mg cm⁻¹L_s⁻¹ at Yatir).
- Measure flow rate of water (11 cm yr⁻¹ at Yatir) using tritium in water (HTO) as tracer.
- CO₂ precipitation rate (within calcite CaCO₃) at Yatir is ~18 mg yr⁻¹ L_s⁻¹ of CO₂ (11 cm yr⁻¹ x 1.6 mg cm⁻¹L_s⁻¹).

Isotope exchange in Yatir (and Nizzanim) forests

- ¹³C and ¹⁴C are tracers for precipitation reaction
- Soil contains up to 20% relict marine calcite.
- DIC concentration decreases with depth.
- Relict calcite: $\Delta^{14}C = -1000$ (zero ¹⁴C).
- Relict calcite: $\delta^{13}C=0$ (same ¹³C as standard)
- Continuous exchange between DIC and marine calcite in USZ as rainwater flows down.
- δ¹³C and Δ¹⁴C values in solid (nodules) vary due to exchange between DIC and relict calcite;
 & precipitation onto nodule surface.

Isotopic evidence for CO₂ incorporation and sequestration into pedogenic carbonate

- δ¹³C and Δ¹⁴C trace the incorporation of atmospheric CO₂ from DIC into pedogenic carbonate, as DIC descends down profile interacting with relict marine limestone
- Depleted δ¹³C values in DIC from atmospheric CO₂ exchanges (continuous dissolution and precipitation) with δ¹³C- enriched relict marine limestone to form pedogenic calcite (**solid**) of intermediate δ¹³C values
- Atmosphere is the sole source of $^{14}\mathrm{C}$, introduced into the USZ as $^{14}\mathrm{CO}_2$ via roots and decay
- Pedogenic solid in the USZ incorporates ¹⁴C, as DIC exchanges with relict limestone
- Therefore: atmospheric CO₂ tagged by radiocarbon is incorporated into pedogenic carbonate

Atir forest research implications

- Until now, atmospheric CO₂ sequestration by forestation was considered only for short-term organic carbon storage (tree biomass, tree liter, soil organics).
- We prove that semi-arid forestation abstracts more atmospheric CO₂ in a manner not previously considered. More importantly, forestation provides for long-term inorganic carbon storage into the USZ.
- Our research quantifies inorganic carbon sequestration by forestation in semi-arid regions.

Global Extrapolation of Inorganic Carbon Precipitation in Forest Soil Sediment

- Consider sediment volume 1 km² & 6 m depth (6x10⁹ L), trees above, roots below. Precipitation ~105 tons of CO₂ per year (18. x10⁻³ x 6x10⁹ gm).
- More accurate estimates require global data on calcite precipitation rates in semi-arid forests.
- A particular global land management policy is tentatively suggested widespread tree planting in semi-arid regions.
- Extrapolating semi-arid sequestration rate globally yields rate of ~2.6 billion tons CO₂/yr (~105 tons km⁻² x 25 x 10⁶ km² ~ 2.6 Pg), ~13% of the rate by which atmospheric CO₂ is currently increasing.

- Atmospheric derived CO_2 is sequestered long term as calcite in USZ.
- Yatir forest receives only ~28 cm/yr rainfall. Low rainfall precludes resolution of calcite. Calcite sequestration much longer term than biomass carbon. Helped by deep roots compared to temperate regions.
- Semi-arid forestation does not decrease productive temperate-region agricultural land. Provide steady employment instead of marginal herding & agriculture, & useful products (lumber, charcoal, off-sets, etc.).
- Global extrapolation yields CO₂ annual semi-arid forest sequestration rate of ~2.6 billion tons CO₂/yr, ~13% of rate of atmospheric CO₂ increase.

THANK YOU!

Sequestration of Atmospheric Carbon Dioxide as Inorganic Carbon under Semi-Arid Forests

Atmospheric CO₂ at Mauna Loa Observatory

Paris Climate Agreement, April & Oct. 2016

- The Paris Agreement deals with GHG emissions mitigation, adaptation and finance starting in the year 2020, to help stop the gradual warming of the Earth.
- Main aim is to limit the increase in the global average temperature to well below 2°C above pre-industrial levels, by reducing GHG emissions.
- Many researchers now claim that such targets require "negative emissions", i.e., extraction of CO₂ from the atmosphere.
- Paris Agreement opened for signature on 22 April 2016. On 5 Oct. 2016, it reached the required 55 countries representing 55 percent of global emissions for the accord to enter into effect. But these agreements need to be followed by actions.

carbon dioxide removal (CDR)

- Large & expensive climate engineering projects have been proposed for *carbon dioxide removal* (CDR) and *solar radiation management* (SRM). CDR captures CO₂ produced by large industrial plants, compresses it for transportation, and then injects it deep into a rock formation for permanent storage. SRM projects seek to reduce global warming by reflecting sunlight, for example using stratospheric sulfate aerosols.
- Carbon reduction & storage via forestation (our low cost & low tech project).

The Carbon Cycle

- Burning fossil fuels and decomposition of dead plants and animals inject CO₂ into the atmosphere.
- Organic carbon production via forestation provides useful short term organic carbon sequestration.
- Semi-arid forests remove atmospheric carbon dioxide, fixing it underground long term as inorganic carbonate salts.

Isotope exchange in Yatir (and Nizzanim) forests

- ¹³C and ¹⁴C are tracers for precipitation reaction.
 Continuous exchange between DIC and solid sediment in USZ as rainwater flows down.
 DIC concentration decreases with depth.
- δ^{13} C in solid marine calcite is a result of exchange between DIC and relict marine calcite (δ^{13} C=0), and precipitation onto marine calcite surface, while DIC enriched from -20 (C3 plants).
- ¹³C data show continuous exchange and precipitation along path from DIC into solid sediment.
- Δ^{14} C in DIC depleted with depth, while solid enriched from -1000 (no ¹⁴C).
- ¹⁴C exchanges demonstrate that CO_2 precipitates out of DIC as calcite. Atmospheric ¹⁴CO₂ via roots is only radiocarbon source.

Yatir forest soil cores to 4.5 meters

- Measure DIC (as CO₂) from CO₂ mass & liters of water (L_w) extracted from USZ wet sediment by vacuum distillation (~250 mg CO₂ L_w⁻¹ at Yatir).
- Porosity (~53%), Humidity (~12%), Dry sediment density (1.24 g cm⁻³) → A Liter of sediment has 0.47 L solid + 0.12 L water + 0.41 L gas.

Forestation Cooling

- Green Walls are being built/proposed over extensive geographical areas (Sahel, China, India, etc.) that have thicker USZ's than Yatir.
- But forests have reduced albedo; and therefore a warming effect.
 Forests can cool by evapotranspiration (ET), but do dry semi-arid forests have sufficient soil moisture?
- Further study needed to evaluate possible net climate benefits of semiarid forestation due to carbon sequestration.