Closing the Healthcare Gap by Applying Predictive Analytics to Improve the Use of Medicines

Murray Aitken

Executive Director, IMS Institute for Healthcare Informatics

July 27, 2015

For discussion purposes only. Not approved by management. IMS Health Confidential

About IMS Health

Leverage information and technology services to deliver intelligence and drive improved performance for a growing universe of healthcare customers globally

10+ Petabytes of unique data
800,000+ data feeds
100,000+ data suppliers

Information

500M+ anonymous patient records 6M+ professionals and organizations 300,000+ social media sources

1,200+ healthcare informatics experts worldwide

4,500+ industry and customer experts worldwide

5 global operation centers of excellence

IMS INSTITUTE HEALTHCARE INFORMATICS

About IMS Institute for Healthcare Informatics

IMS INSTITUTE HEALTHCARE INFORMATICS

What is the healthcare gap?

Clinical and economic dimensions

For example, the difference between responsible use of medicines and current reality ...

...would reduce overall health expenditure and improve outcomes

Nonmedicine spending, typically the larger portion of total health costs, would decrease due to reduced outpatient and hospital-based utilization*

Medicine spending may increase or decrease: consistent and appropriate medicine use would increase medicine spending; reducing overuse and misuse would reduce medicine spending

Health outcomes would improve through better quality of life, reduced morbidity and mortality

... that results in a ~500 Billion USD avoidable cost opportunity annually

Annual magnitude of the opportunity in the health system Total \$Bn with minimum and maximum ranges

IMS INSTITUTE HEALTHCARE INFORMATICS

Growing availability of Big Data in healthcare

Non-identified data connecting fragmented healthcare

The value of predictive analytics

Predictive analytics can help overcome many common limitations of classical statistical methods encountered when analyzing complex data

Study Feature	Classical statistics	Predictive analytics
Objective	Understanding associations between variables	Prediction / knowledge discovery
Scientific philosophy	Hypothesis-driven / variables pre- specified	Data-driven / variable agnostic
Statistical method (examples)	Descriptive, regressions	Random Forest, Support Vector Machines, Neural Networks
Strengths of approach	Widely understood; ideal for testing hypotheses; estimate impact of variables	Flexible / powerful; ideal at producing robust evidence in complex settings; prediction accuracy

The value of predictive analytics is being recognised across healthcare

Regulators FDA now routinely license medical devices embedding advanced machine learning algorithms

Academia

Stanford, Johns Hopkins and dozens of other prestigious universities are building research centres to promote machine learning applications e.g. personalized medicine

CMS

Investing in predictive analytics to combat fraud leading to savings of \$210m in 2013

Life Science

Widespread investment by pharma in predictive analytics to accelerate drug discovery, identify prognostic and predictive biomarkers, etc

Health Care Providers

Providers are reducing costs and improving patient health through predictive models for population risk management and hospital readmissions e.g. 20% reduction by Northshore health system in high-risk hospital readmissions

Predictive analytics can add value throughout the product lifecycle

R&D	CLINICAL DEVELOPMENT	POST-LAUNCH
Accelerate drug discovery and understanding of	Optimize clinical trial design and market access strategy through identification of	Enhance product uptake through
disease pathology through identification of	 Predictive biomarkers / factors for treatment response 	 Evidence generation on treatment effectiveness,
 Lead compounds Mutations predictive of disease 	 Prognostic biomarkers / factors for disease progression 	patient targeting, treatment response profiling
	• Patient recruits for trials as well as changing the TPPP of a major development program to increase the life- time value of a product	 Supporting clinical decision-making via analytics-enable technology e.g. risk stratification tool

Applying predictive analytics capabilities

Identifying non-diagnosed patients: Finding new patients for treatments

e.g. rare disease detection, market sizing, physician targeting

Risk stratification for disease progression

Identify target populations for treatment through prediction of patients most likely to experience disease progression and who stand to gain most from treatment

e.g. identify high risk target groups for prioritized efforts to access

Treatment response profiling

Increase product understanding, targeting and development through identification of treatment patient responders and non-responders

e.g. identifying target groups for market access, post-launch for product understanding and identifying unmet need

Each of these analytics offerings can help realize significant health system benefits

Identifying Undiagnosed Patients

OVERVIEW

- · Diagnostic algorithms help identify undiagnosed patients
- Algorithms can help find new patients for treatments through:
 - Accelerating time to diagnosis
 - Identifying pockets of untreated patients / physician targeting
 - Detecting patients with rare diseases
- This can be achieved through evidence generation, salesforce targeting or automatic alerts in EMR systems

IMS STUDY

- A predictive algorithm was developed to identify potentially undiagnosed patients with a rare oncology disease
- · Analysis was based on linked primary and secondary-care data
- 350 confirmed cases were identified out of ~3 million patients
- · Algorithm development was based on 300 of the confirmed cases and 30k random unconfirmed cases
- The algorithm was validated using the remaining 50 confirmed cases and 70k random unconfirmed cases

OUTCOMES

12

2. Risk stratification for disease progression

OVERVIEW

- Identifying patients most likely to experience disease progression
- Evidence can support product uptake by identifying types of patients who stand to gain most from treatment
- · Published results can inform guideline development
- Predictive algorithm can be built into EMR to facilitate clinical decision-making

IMS STUDY

- · A client has an ophthalmology drug expected to launch shortly
- · Payers are unlikely to approve reimbursement for the large indicated population
- The client is interested in identifying patients most likely to progress from mild to advance disease stage
- The evidence can be used to secure reimbursement for targeted patient group

OUTCOMES

- The model was highly effective at stratifying patients by risk of disease progression¹
 - Patients were 15 times more likely to experience disease progression in the highest compared to lowest strata
- Key prognostic attributes included number of Optical coherence tomography, number of eye diagnoses and hypertension

3. Treatment response profiling

OVERVIEW

Identifying treatment responders / non-responders can support:

- Targeted market access strategy focusing on positive responders
- Enhanced product understanding by profiling types of patients who benefit most from treatment
- · Assessment of unmet need

IMS STUDY

- A client with a product in neurology, was concerned about losing market share to an alternative product
- The client wanted to know the profile of patients who were more persistent (adherent) on their product compared to the alternative product
- This evidence could be used for targeted messaging

OUTCOMES

Analysis was based on uplift models, designed to identify treatment heterogeneity¹

- On average, the persistence rate was 9% lower for the client product
- · However, analysis revealed a sizeable potential target group
- Not only was the persistence rate for the client product high in the target group, it was 8 percentage points higher than for the alternative product
- In relation to all treated patients, the target group was more likely to be male, younger and have fewer co-morbidities.

Source: IMS RWE Solutions; Advanced Analytics

14

Future advancement of predictive analytics

Dependencies for increased value from predictive analytic techniques

