

Spatiotemporal Analysis of the Impact of Climate Change on the State of Vegetation Cover in the Namahadi Catchment Area in South Africa

Inspiring excellence. Trans Inspireer uitnemendheid. V •Paper Presented at the st International Conference on Natural Hazards and Disaster Management June 1-3, 2017 Osaka, Japan

> Professor Geoffrey Mukwada Afromontane Research Unit University of the Free State <u>mukwadag@ufs.ac.za</u>

OVERVIEW

Study Area and Problem Statement Research Question and Objective Methodology **Results and Discussion** Conclusion

June 12, 2017

T: +27(0)51 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

Location: -28.370 to -28.776 degrees South, and 28.694 to 28.972 East

Location of Study Area

(C

Eastern Free State Montane Bioregion

Catchment areas in Maluti-a-Phofung Municipality

Namahadi Catchment Area

Description of Study Area

- The Namahadi Catchment Area (NCA) is located in the Maluti-Drakensberg Mountains, a unique Afro-Alpine region in southern Africa.
- Precipitation ranges between 635 mm and 650 mm per annum
- Maximum temperatures range from 15 Degrees Celsius in winter to 26 Degrees Celsius in summer, while average minimum temperatures range between -1 Degree Celsius to 5 Degrees Celsius in winter and summer, respectively.
- Home to a rich diversity of plant and animal species

- Characterized by a variety of landscapes, rare ecosystems and endemic ۲ species
- Agricultural economy cereals, dairying and beef
- The Maluti-Drakenberg Mountain Region accounts for about 25% of water supply in South Africa and supporting almost 50% of the country's GDP
- It contributes significantly to all water-related economic activities downstream, including agriculture, tourism and manufacturing

Copyright reserved Kopiereg voorbehou

Problem Statement

- Climate change is a threat to ecosystem goods and services derived from the Afro-Alpine region
- Impacts of climate change are expected to be disproportionately higher in ۲ mountainous regions than in other regions (Bhusal et al. 2016).
- This undermines the South African economy and rural livelihoods
- High mountain vegetation is generally considered to be particularly vulnerable to climate change (Pauli, 2014).

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE FREISTATA

- Paucity of historical data about which areas of this Afro-Alpine region are affected by climate change.
- Reliable records on climate data do not exist for the greater part of the area due to inaccessibility of some areas within the region.
- Without reliable data on climate change the state of vegetation health can lacksquarebe used as a sensitive "ecological indicator" for climate change effects (Pauli, 2014).

Copyright reserved Kopiereg voorbehou

Research Question and Objective

Research Question:

In what way has climate change impacted vegetation in the NCA and what spatiotemporal forms have the impacts taken?

Research Objective:

To assess how climate change has impacted vegetation and determine the spatiotemporal forms that the impacts have taken.

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

Methodology

- Gridded precipitation and temperature data for the NCA were acquired from Climate Explorer for the period 1960-2014
- The data source was CRU-TS and the resolution was 0.5 X 0.5 degrees
- Standardized Precipitation Index (SPI) values were calculated from the rainfall data while temperature data were used to divide the time series into epochs
- McKee's et al (1993) classification was used to classify precipitation ۲

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE FREISTATA

McKee et al (1993)

2.0+	extremely wet		
1.5 to 1.99	very wet		
1.0 to 1.49	moderately wet		
99 to .99	near normal		
-1.0 to -1.49	moderately dry		
-1.5 to -1.99	severely dry		
-2 and less	extremely dry		

Table 1. SPI values

T: 051 401 9111 info@ufs

- Sequential Regime Shift Detection Software (RSDS) Version 6.1 ۲ (Rodionov, 2015) was used to determine epochs
- Normalized Difference Vegetation Index (NDVI) values were calculated from Landsat 8 images for the last 2 drought years (one in each epoch) and 2 years of normal precipitation in the second epoch.
- NDVI values for equidistantly distributed points were extracted at a 0.005 X 0.005 degrees resolution and kriged in an ArcGIS (Version 10.3) environment to determine spatial variability of vegetation health.

Copyright reserved Kopiereg voorbehou

RESULTS AND DISCUSSION

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

Copyright reserved Kopiereg voorbehou

Trends in Average Maximum Temperature

- SRDS revealed two epochs one between 1960 and 2001, and another during the post 2001 period.
- Average maximum temperature in NCA was 20.9 Degrees Celsius between 1960 and 2001, compared to 21.8 Degrees Celsius in the post 2001 epoch (p=0.000155)
- Average maximum temperature increased by 0.9 Degrees Celsius

Copyright reserved

Kopiereg voorbehou

(C

- Precipitation has increased during the study period
- During the first epoch drought frequency was 1 per every 5.3 years, compared to 1 in 17 years in the second epoch

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

Copyright reserved Kopiereg voorbehou

NDVI Values for 1997 and 2008 Droughts

Copyright reserved Kopiereg voorbehou

Areas Where Vegetation Deteriorated Most

(C)

Relationship Between SPI and NDVI Values

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

NDVI — Linear (NDVI)

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou (\mathbf{C})

UNIVERSITEIT VAN DIE YUNIVESITHI YA

	ANOVA							
			Sum of Squares	df	Mean Square	F	Sig.	
	NDVI values for 1997	Between Groups	10.837	3	3.612	6660.655	.000	
		Within Groups	1.373	2532	.001			
		Total	12.210	2535				
	NDVI values for 2005	Between Groups	6.763	3	2.254	252.699	.000	
		Within Groups	22.589	2532	.009			
		Total	29.352	2535				
	NDVI values for 2008	Between Groups	3.411	3	1.137	653.342	.000	
		Within Groups	4.407	2532	.002			
		Total	7.818	2535				
	NDVI values for 2013	Between Groups	.232	3	.077	17.768	.000	
		Within Groups	11.033	2532	.004			
T: 05		Total	11.265	2535				

Copyright reserved Kopiereg voorbehou

How Has Vegetation Health Changed in Response to **Climate Change?**

- Positive relationship between SPI values and average NDVI values, with a correlation coefficient of 0.68
- Negative relationship between NDVI values and Maximum Temperature, with a correlation coefficient of -0.87
- The differences between the mean NDVI values for different years are statistically significant

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

Conclusion

- Climate change has occurred in NCA, where both precipitation and ۲ maximum temperature have increased
- Increase in precipitation is not statistically significant
- The frequency of drought has decreased during the study period
- The effect of climate change on vegetation in the NCA is spatially variable ۲
- Both the increase of precipitation and maximum temperature are related to the variability to the state of vegetation health in the catchment

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE FREISTATA

- It is difficult to conclude whether precipitation or maximum temperature is the dominating factor in determining the state of vegetation health
- In the NCA monitoring changes in NDVIs can be used for improving environmental planning and for mitigating climate change
- Further research involving the use of the Standardized Precipitation and **Evaporation Index (SPEI)** is needed in order to check the synergistic effect of precipitation and temperature on vegetation health

Copyright reserved Kopiereg voorbehou

Reference

- Bhusal, J.K., Chapagain, P.S., Regmi, S., Gurung, P., Zulkafli, Z., Karpouzoglou, T., Pandeya, B., Buytaert, W. and Clark, J., 2016. Mountains Under Pressure: Evaluating Ecosystem Services and Livelihoods in the Upper Himalayan Region of Nepal. International Journal of Ecology and Environmental Sciences, 42(3), pp.217-226.
- McKee, T. B.; N. J. Doesken; and J. Kleist. 1993. "The relationship of drought frequency and duration to time scales." Preprints, Eighth Conference on Applied Climatology, January 17–22, Anaheim, California, pp. 179–184
- Pauli, H., Gottfried, M. and Grabherr, G., 2014. Effects of climate change on the alpine and nival vegetation of the Alps. Journal of mountain ecology, 7: 1-4.

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

