ADVANCES ON SHEAR STRENGTH AND **BEHAVIOR OF** BRIDGE GIRDERS WITH STEEL CORRUGATED WEBS



Dr. MOSTAFA FAHMI HASSANEIN Associate Professor

Department of Structural Engineering; Faculty of Engineering; Tanta University, Tanta; Egypt

Tuesday - 17 Nov., 2015



1. Advantages of corrugated web plates



- 1. Advantages of corrugated web plates
- They have much higher buckling strengths.
- The own significant out-of-plane stiffness.
- They act as continuous stiffeners, so no need to use stiffeners.
- Their thickness is significantly reduced.





Structural efficiencyAesthetical appearance

- 2. Interaction between shear and flexural behaviors
- Corrugated webs do not carry significant longitudinal stresses from the primary flexure of the girders and, consequently, the bending moment can reasonably be assumed to be carried totally by the flanges. <u>Hamilton (1993) and Driver et al (2006)</u>
- This is called the "accordion effect" and it is characterized by negligible axial stiffness.
- Therefore, the shear is carried entirely by the webs.



3. Elastic shear buckling







 $\tau_{cr.I}$ 

Interactive buckling

# 4. Interactive shear buckling stresses

Several researches were conducted to find the best exponent n

| Paper              | Year | Interactive shear buckling<br>stress predictions                                                           |  |  |  |  |
|--------------------|------|------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bergfelt and Leiva | 1984 | $\frac{1}{1} = \frac{1}{1} + \frac{1}{1}$                                                                  |  |  |  |  |
| Yi et al.          | 2008 | $(	au_{cr,I})$ $(	au_{cr,L})$ $(	au_{cr,G})$                                                               |  |  |  |  |
| El-Metwally        | 1998 | $\frac{1}{(\tau_{cr,I})^2} = \frac{1}{(\tau_{cr,L})^2} + \frac{1}{(\tau_{cr,G})^2} + \frac{1}{(\tau_y)^2}$ |  |  |  |  |
| Abbas et al.       | 2002 | $\frac{1}{(\tau_{cr,I})^2} = \frac{1}{(\tau_{cr,L})^2} + \frac{1}{(\tau_{cr,G})^2}$                        |  |  |  |  |
| Hiroshi            | 2003 | $\frac{1}{(\tau_{cr,I})^4} = \frac{1}{(\tau_{cr,L})^4} + \frac{1}{(\tau_{cr,G})^4}$                        |  |  |  |  |
| Sayed-Ahmed        | 2005 | $\frac{1}{(\tau_{cr,I})^3} = \frac{1}{(\tau_{cr,L})^3} + \frac{1}{(\tau_{cr,G})^3} + \frac{1}{(\tau_y)^3}$ |  |  |  |  |

5. Types of tapered web panels B.M.D. ↑□↓ 12 S.F.D.  $\downarrow \Box \uparrow$ 1 6 2 3 4 | 5 111 **Direction of Tension Field** 

Tension on tapered flange

Compression on tapered flange



#### Objectives

- 1. Research objectives
- is to provide additional data to engineers and the scientific community about the shear strength and behavior of:
- Prismatic bridge girders with corrugated webs.
- Tapered bridge girders with corrugated webs.

### In detail, to

- find the real behavior at the juncture between the corrugated web and the flanges of <u>Prismatic</u> girders. Never been studied
- provide new critical stress formula.
- suggest a more suitable strength than those available in literature.

#### Objectives

- 1. Research objectives: Continue
- is to provide additional data to engineers and the scientific community about the shear strength and behavior of:
- Prismatic bridge girders with corrugated webs.
- Tapered bridge girders with corrugated webs.

## In detail, to

- Investigate the effect of different junctures between the corrugated web and the flanges of <u>Tapered</u> girders.
- provide new critical stress formulas for different tapered typologies.
- get the appropriate design strengths of <u>Tapered</u> girders.



• Validation of FEM

1. Flat web plates

$$\tau_{cr} = \frac{k\pi^2 E}{12(1-\nu^2)} \left(\frac{t_w}{h_w}\right)^2$$



#### • Validation of FEM

2. Prismatic girders with corrugated webs



#### • Validation of FEM

## 3. Tapered girders with flat webs



Deflection (mm)



# **Parametric study**



# **Parametric study**

# Prismatic



## **Tapered**

# Plates

# Girders

|         |          |      |      |      | attended to see the | The second se |                |      |
|---------|----------|------|------|------|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------|------|
| ALL AND | Bridge   | b    | d    | с    | h <sub>r</sub>      | t <sub>w</sub>                                                                                                  | h <sub>w</sub> | α    |
| **      | name     | [mm] | [mm] | [mm] | [mm]                | [mm]                                                                                                            | [mm]           | [°]  |
| -       | Shinkai  | 250  | 200  | 250  | 150                 | 9                                                                                                               | 1183           | 36.9 |
| *       | Matsnoki | 300  | 260  | 300  | 150                 | 10                                                                                                              | 2210           | 30.0 |
|         | Hondani  | 330  | 270  | 336  | 200                 | 9                                                                                                               | 3315           | 36.5 |
|         | Cognac   | 353  | 319  | 353  | 150                 | 8                                                                                                               | 1771           | 25.2 |
|         | Maupre   | 284  | 241  | 284  | 150                 | 8                                                                                                               | 2650           | 31.9 |
|         | Dole     | 430  | 370  | 430  | 220                 | 10                                                                                                              | 2546           | 30.7 |
|         | IIsun    | 330  | 330  | 386  | 200                 | 18                                                                                                              | 2292           | 31.2 |
|         | Average  | 325  | 284  | 334  | 174                 | 10                                                                                                              | 2281           | 32   |



## **Prismatic - Plates**

1. Effect of simple and fixed boundary conditions

| No. | h <sub>w</sub><br>[mm] | t <sub>w</sub><br>[mm] | Buckling mode |     | τ <sub>cr,FE</sub><br>[N/r | [10]/[11] |       |
|-----|------------------------|------------------------|---------------|-----|----------------------------|-----------|-------|
| [   | [2]                    | [3]                    |               | [9] | [10]                       | [11]      | [12]  |
| 1   | 1000                   | 6                      | L             | L   | 366                        | 377       | 0.97  |
| 2   | 1000                   | 8                      | Ι             | Ι   | 612                        | 636       | 0.96  |
| 3   | 1000                   | 10                     | Ι             | Ι   | 889                        | 932       | 0.95  |
| 4   | 1000                   | 12                     | Ι             | Ι   | 1184                       | 1255      | 0.94  |
| 5   | 1000                   | 14                     | Ι             | Ι   | 1489                       | 1579      | 0.94  |
| 6   | 1000                   | 16                     | Ι             | Ι   | 1782                       | 1904      | 0.94  |
| 7   | 1000                   | 18                     | Ι             | Ι   | 2085                       | 2235      | 0.93  |
| 15  | 1400                   | 6                      | Ι             | Ι   | 351                        | 354       | 0.99  |
| 16  | 1400                   | 8                      | Ι             | Ι   | 578                        | 590       | 0.98  |
| 17  | 1400                   | 10                     | Ι             | Ι   | 818                        | 853       | 0.96  |
| 18  | 1400                   | 12                     | G             | Ι   | 1070                       | 1119      | 0.96  |
| 19  | 1400                   | 14                     | G             | Ι   | 1329                       | 1391      | 0.96  |
| 20  | 1400                   | 16                     | G             | Ι   | 1594                       | 1673      | 0.95  |
| 21  | 1400                   | 18                     | G             | Ι   | 1864                       | 1962      | 0.95  |
|     |                        |                        |               |     |                            | Ave       | 0.96  |
|     |                        |                        |               |     |                            | COV       | 0.014 |

2. Comparison with the available interactive critical stress (n=1.0)

|         | 1.1.2 |       | $\frac{\text{Simple}}{\tau_{cr,FE}  /  \tau_{cr,I,1}}$ |                | Fix                            | ked             | Fixed                            |                |  |
|---------|-------|-------|--------------------------------------------------------|----------------|--------------------------------|-----------------|----------------------------------|----------------|--|
| No.     | $h_w$ | $t_w$ |                                                        |                | $	au_{cr,FE}$ / $	au_{cr,I,1}$ |                 | $	au_{cr,FE}$ / $	au_{cr,I,0.6}$ |                |  |
| 1.9.1.1 | [mm]  | [mm]  | 1 -26                                                  | 1 -216         | 1 - 69 1 1 - 50 2              |                 | 1 -69 1 1 -50 2                  |                |  |
| [1]     | [0]   | [2]   | $K_{G} = 30$                                           | $K_{G} = 31.0$ | $K_{G} = 00.4$                 | $K_{G} = -39.2$ | K <sub>G</sub> -00.4             | $K_{G} = 39.2$ |  |
|         |       | [3]   | [4]                                                    | [5]            | [6]                            | [/]             | [8]                              | [9]            |  |
| 1       | 1000  | 6     | 1.12                                                   | 1.13           | 0.68                           | 0.69            | 0.83                             | 0.85           |  |
| 2       | 1000  | 8     | 1.08                                                   | 1.09           | 0.66                           | 0.67            | 0.85                             | 0.87           |  |
| 3       | 1000  | 10    | 1.04                                                   | 1.05           | 0.64                           | 0.65            | 0.85                             | 0.87           |  |
| 4       | 1000  | 12    | 0.99                                                   | 1.01           | 0.61                           | 0.63            | 0.84                             | 0.87           |  |
| 5       | 1000  | 14    | 0.95                                                   | 0.97           | 0.59                           | 0.60            | 0.82                             | 0.86           |  |
| 6       | 1000  | 16    | 0.90                                                   | 0.92           | 0.56                           | 0.57            | 0.80                             | 0.84           |  |
| 7       | 1000  | 18    | 0.86                                                   | 0.89           | 0.54                           | 0.55            | 0.78                             | 0.82           |  |
| 15      | 1400  | 6     | 1.13                                                   | 1.14           | 0.67                           | 0.68            | 0.88                             | 0.90           |  |
| 16      | 1400  | 8     | 1.10                                                   | 1.12           | 0.66                           | 0.67            | 0.90                             | 0.94           |  |
| 17      | 1400  | 10    | 1.05                                                   | 1.08           | 0.64                           | 0.65            | 0.91                             | 0.95           |  |
| 18      | 1400  | 12    | 1.01                                                   | 1.04           | 0.61                           | 0.63            | 0.90                             | 0.94           |  |
| 19      | 1400  | 14    | 0.98                                                   | 1.02           | 0.59                           | 0.61            | 0.89                             | 0.93           |  |
| 20      | 1400  | 16    | 0.95                                                   | 1.00           | 0.57                           | 0.60            | 0.88                             | 0.93           |  |
| 21      | 1400  | 18    | 0.94                                                   | 0.98           | 0.56                           | 0.59            | 0.87                             | 0.92           |  |
|         | 27 1  | Ave   | 1.12                                                   | 1.17           | 0.67                           | 0.70            | 0.99                             | 1.05           |  |
|         |       | COV   | 0.130                                                  | 0.149          | 0.066                          | 0.076           | 0.131                            | 0.150          |  |

n = 0.6

 $\tau_{cr,I,0.6} = \frac{\tau_{cr,L} \cdot \tau_{cr,G}}{\left( (\tau_{cr,L})^{0.6} + (\tau_{cr,G})^{0.6} \right)^{\frac{1}{0.6}}}$ 

## **Prismatic - Panels**

# 3. Limit of fixed juncture

- when the flanges are right
- if they are relatively ri deformation of flanges.

tw

6

6

6

8

8

8

10

10

10



shear failure mechanisms occurs.

 $\blacktriangleright$  The realistic support condition at the juncture is nearly fixed for the case of  $(t_f / t_w \ge$ 3.0).

**Prismatic - Panels** 

4. Recommended validity limit of the proposed formula

For cases of girde  $\tau_{cr,I,0.6} = \frac{\tau_{cr,L} \cdot \tau_{cr,G}}{\left((\tau_{cr,L})^{0.6} + (\tau_{cr,G})^{0.6}\right)^{\frac{1}{0.6}}} \text{ ing (t<sub>f</sub> / t<sub>w</sub> ≥ 3.0).}$ In composite gire

#### **Embedded** connections



Ikeda and Sakurada (2005)

Houdentrie Bridge

## **Prismatic - Girders**

5. Comparison with available shear strengths

Moon et al.

# Driver et al.

$$\begin{aligned} \frac{\tau_{n,M}}{\tau_{y}} &= \begin{cases} 1.0 & :\lambda_{s} \leq 0.6\\ 1 - 0.614(\lambda_{s} - 0.6) : 0.6 < \lambda_{s} \leq \sqrt{2}\\ 1 & & \sqrt{2} < \lambda_{s} \end{cases} \\ \tau_{n,D} &= \sqrt{\frac{(\tau_{cr,L} \cdot \tau_{cr,G})^{2}}{(\tau_{cr,L})^{2} + (\tau_{cr,G})^{2}}} & \text{C bridges}\\ \text{el webs} \end{aligned}$$

$$\begin{aligned} \lambda_s &= 1.05 \sqrt{\frac{\tau_y}{t_w}} \left(\frac{h_w}{t_w}\right) \\ \tau_{n,S} &= \tau_y \left(\frac{1}{(\lambda_{I,3})^6 + 2}\right)^{1/3} \end{aligned}$$

# Sause and Braxtan

# 5. Comparison with available shear strengths

| Girder        | Failure | $	au_{\it FE}$ | $\tau_{n,M}$ | $\tau_{n,D}$ | $\tau_{n,S}$ | $\tau_{n,M,0.6}$ | $	au_{n,D,0.6}$ | $\tau_{n,S,0.6}$ | $\tau_{n,S,0.6}$ |
|---------------|---------|----------------|--------------|--------------|--------------|------------------|-----------------|------------------|------------------|
| $(h_w - t_w)$ | modes   | $	au_y$        | $	au_y$      | $	au_y$      | $	au_y$      | $	au_y$          | $	au_y$         | $	au_y$          | $	au_{FE}$       |
| 1600-6        | Ι       | 0.85           | 0.86         | 0.71         | 0.63         | 0.91             | 1.80            | 0.77             | 0.91             |
| 1600-8        | Ι       | 0.92           | 1.00         | 0.71         | 0.63         | 1.00             | 2.86            | 0.79             | 0.85             |
| 1600-10       | Ι       | 0.79           | 1.00         | 0.71         | 0.63         | 1.00             | 4.02            | 0.79             | 1.00             |
| 1600-12       | G       | 0.85           | 1.00         | 0.71         | 0.63         | 1.00             | 5.27            | 0.79             | 0.93             |
| 1800-6        | Ι       | 0.90           | 0.86         | 0.71         | 0.63         | 0.90             | 1.70            | 0.77             | 0.86             |
| 1800-8        | Ι       | 0.91           | 0.97         | 0.71         | 0.63         | 0.99             | 2.66            | 0.79             | 0.87             |
| 1800-10       | Ι       | 0.80           | 1.00         | 0.71         | 0.63         | 1.00             | 3.71            | 0.79             | 0.99             |
| 1800-12       | G       | 1.01           | 1.00         | 0.71         | 0.63         | 1.00             | 4.81            | 0.79             | 0.78             |
|               | Ave     | 0.85           | 0.95         | 0.71         | 0.63         | 0.97             | 3.00            | 0.78             | 0.93             |
|               | COV     | 0.077          | 0.066        | 0.000        | 0.000        | 0.051            | 1.150           | 0.012            | 0.090            |

$$\begin{split} & \textit{if} \ \tau_{el} > 0.8 \tau_y \\ & \tau_{inel} = \sqrt{0.8 \tau_y \tau_{el}} \leq \tau_y \end{split}$$

Elgaaly et al. (1996)

$$Ave\frac{\lambda_{I,0.6}}{\lambda_{I,3}} = 0.54$$

**Prismatic - Girders** 

5. Comparison with available shear strengths



### **Tapered - Plates**

1. Effect tapered web typology on interactive critical stress

 $t_w = 6mm$ 

 $\tau_{cr,FE}$ 





Case I Case II Case III Case IV



 $\tau_{cr,FE}$  $\tau_{cr,FE,P}$ 





Case I Case II Case III Case IV



Case III

Case IV

#### **Tapered - Plates**

2. Proposed interactive critical stress of tapered webs

The recommendation of the current design code for plated structural elements <u>EN 1993-1-5 (2007)</u> to determine the ultimate shear resistance of tapered plate girders with flat web plates as prismatic ones CANNOT BE USED.

 $\tau_{cr, \text{Pr}op} = \tau_{cr, FE, P} / (1 + \tan \gamma)$ 





 $\tau_{cr, Prop} = \tau_{cr, FE, P} / (1 - \tan \gamma)$ 

$$\tau_{cr,\text{Pr}op} = 1.04\tau_{cr,FE,P} / (1 + \tan \gamma)$$

Case I



$$\tau_{cr, \text{Pr}op} = 0.94 \tau_{cr, FE, P} / (1 - \tan \gamma)$$



## **Tapered - Girders**

## 3. Nonlinear strengths – Parametric study results



## **Tapered - Girders**

4. Failure modes and stress distributions



## **Tapered - Girders**

5. Comparison with available shear strengths

# Moon et al.

$$\begin{vmatrix} \frac{\tau_{n,M}}{\tau_y} = \begin{cases} 1.0 & :\lambda_s \le 0.6\\ 1 - 0.614(\lambda_s - 0.6) & :0.6 < \lambda_s \le \sqrt{2}\\ \frac{1}{\lambda_s^2} & :\sqrt{2} < \lambda_s \end{cases}$$

Design manual for PC bridges with corrugated steel webs

$$\lambda_{s} = 1.05 \sqrt{\frac{\tau_{y}}{k_{I}E}} \left(\frac{h_{w}}{t_{w}}\right)$$



$$\tau_{n,S} = \tau_y \left(\frac{1}{(\lambda_{I,3})^6 + 2}\right)^{1/3}$$

## **Tapered - Girders**

# 5. Comparison with available shear strengths

| Tuno     | t <sub>w</sub> | 2           | $V_{ul,FE}$ | Buckling | 1 | ul,FE    | $\tau_{ul,M}$  | $\tau_{ul,S}$ |
|----------|----------------|-------------|-------------|----------|---|----------|----------------|---------------|
| Туре     | [mm]           | $\lambda_s$ | [kN]        | mode     |   | $\tau_y$ | $\tau_{ul,FE}$ | $	au_{ul,FE}$ |
|          | 6              | 0.683       | 944         | Ι        |   | 0.96     | 0.98           | 0.81          |
|          | 8              | 0.533       | 1318        | G        |   | 1.00     | 1.00           | 0.79          |
| Case I   | 10             | 0.445       | 1693        | G        |   | 1.03     | 0.97           | 0.77          |
|          | 12             | 0.386       | 2144        | G        |   | 1.09     | 0.92           | 0.72          |
|          | 14             | 0.346       | 2619        | G        |   | 1.14     | 0.88           | 0.69          |
|          | 6              | 0.696       | 1097        | Ι        |   | 1.12     | 0.89           | 0.71          |
|          | 8              | 0.544       | 1619        | G        |   | 1.23     | 0.81           | 0.64          |
| Case II  | 10             | 0.453       | 2010        | G        |   | 1.23     | 0.81           | 0.64          |
|          | 12             | 0.394       | 2147        | G        |   | 1.09     | 0.92           | 0.72          |
|          | 14             | 0.352       | 2295        | F        |   | 1.00     | 1.00           | 0.79          |
|          | 6              | 0.602       | 652         | Ι        | - | 0.66     | 0.97           | 1.20          |
|          | 8              | 0.470       | 917         | Ι        |   | 0.70     | 0.91           | 1.13          |
| Case III | 10             | 0.392       | 1146        | G        |   | 0.70     | 0.91           | 1.13          |
|          | 12             | 0.341       | 1450        | G        |   | 0.74     | 0.86           | 1.07          |
|          | 14             | 0.305       | 1686        | G        |   | 0.73     | 0.88           | 1.08          |
|          | 6              | 0.624       | 634         | Ι        |   | 0.64     | 0.97           | 1.22          |
|          | 8              | 0.487       | 894         | Ι        |   | 0.68     | 0.94           | 1.16          |
| Case IV  | 10             | 0.406       | 1136        | G        |   | 0.69     | 0.93           | 1.14          |
|          | 12             | 0.353       | 1397        | G        |   | 0.71     | 0.90           | 1.11          |
|          | 14             | 0.316       | 1666        | G        |   | 0.73     | 0.88           | 1.08          |

 $h_{wo}$ / h<sub>w1</sub> '

## **Tapered - Girders**

6. Recommended design shear strengths

$$\frac{\tau_{ul, \text{Pr}op}}{\tau_{y}} = C_{T} \begin{cases} 1.0 & :\lambda_{s} \leq 0.6 \\ 1 - 0.614(\lambda_{s} - 0.6) & :0.6 < \lambda_{s} \leq \sqrt{2} \\ \frac{1}{\lambda_{s}^{2}} & :\sqrt{2} < \lambda_{s} \end{cases}$$

$$C_T = \begin{cases} 1.0 & c \\ h_{wo} / h_{w1} & c \end{cases}$$

Case I Case II

Case III Case IV



#### Recommendations

## Recommendations

- New experimental results on girders with corrugated webs with real bridge dimensions should be conducted.
- New work should be made on checking the available buckling and design equations on all available bridge corrugated web profiles. <u>An MSc is under preparation now by Elkawase, A.A. at Tanta</u> <u>University</u>.
- The real behaviour of continuous tapered girders with corrugated webs, containing different web typologies, should be carried out by means of experimental tests. <u>A thesis is under</u> preparation now by Hassanein and El Hadidy at Tanta University.
- Concentration on the behaviour of tapered girders' behaviour should be made. <u>A paper is under review now by Zevallos et al.</u> (Zevallos, E., Hassanein, M.F., Real, E. Mirambell, E.) as a collaboration between Tanta University and Universitat Politècnica de Catalunya, UPC of Spain.

Recommendations

## Recommendations

Composite girders with corrugated webs in negative bending moment zones should be checked by using fibre reinforced polymers. <u>An MSc is under preparation know by Elshinrawy, T. at Tanta</u> <u>University</u>.

#### For more information:

- Hassanein, M.F., Kharoob O.F., (2015), "Linearly Tapered Bridge Girder Panels with Steel Corrugated Webs near Intermediate Supports of Continuous Bridges", *Thin-Walled Structures*, Vol. 88, pp. 119-128.
- Hassanein, M.F., Kharoob O.F., (2014), "Shear buckling Behavior of Tapered Bridge Girders with Steel Corrugated Webs", *Engineering Structures*, Vol. 74, pp. 157-169, 2014.
- Hassanein, M.F., Kharoob O.F., (2013), "Behavior of Bridge Girders with Corrugated Webs: (II) Shear Strength and Design", *Engineering Structures*, Vol. 57, pp. 544-553.
- Hassanein, M.F., Kharoob O.F., (2013), "Behavior of Bridge Girders with Corrugated Webs: (I) Real Boundary Conditions at the Juncture of the Web and Flanges", *Engineering Structures*, Vol. 57, pp. 554-564.

# Thank you for listening

Contact details:

## Dr. MOSTAFA FAHMI HASSANEIN

Department of Structural Engineering; Faculty of Engineering; Tanta University, Tanta; Egypt

> E-mail: <u>mostafa.fahmi@yahoo.com</u> <u>mostafa.fahmi@f-eng.tanta.edu.eg</u> Mobile Tel: +201228898494 Fax: +20403315860