

World Conference on climate Change October 24-26, 2016 Valencia, Spain

Susceptibility assessment of climate changeinduced geo-disasters in Korea

2016. 10. 25

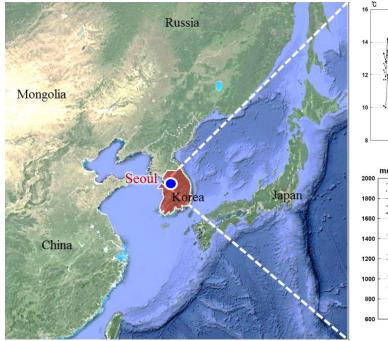
Moonhyeon Hong

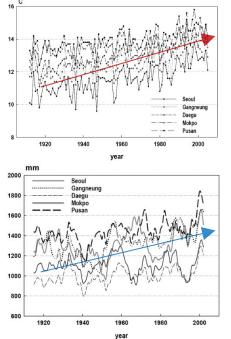
Yonsei University

Sangseom Jeong Junghwan Kim Kwangwoo Lee

A case study on landslides

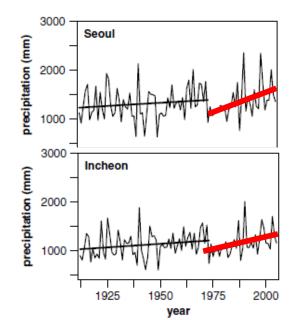
Susceptibility assessment of landslide




I Introduction

Climate change Climate change-induced geo-disaster Schematic diagram of study procedure

Green Infrastructure Technology for Climate Change

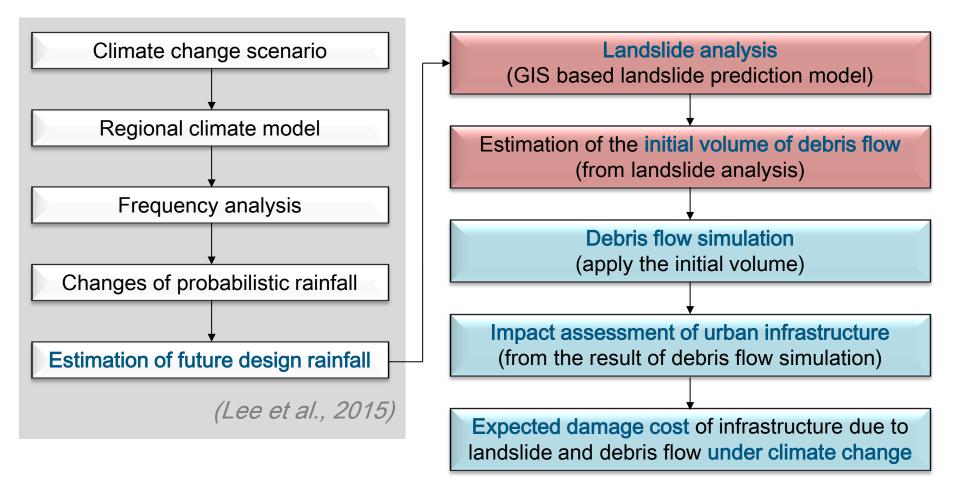

1 Climate change

Warming

Rainfall increase

✓ Climate change

- <u>More severe fluctuation in rainfall patterns</u> (Rainfall intensity, frequency and quantity)
- Triggering the geo-disaster (landslide)

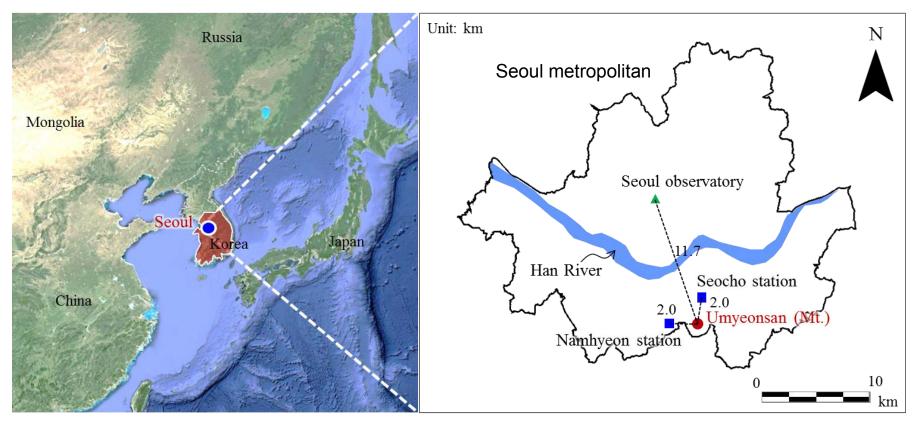

Backgrounds

- Global climate change is affecting regional weather patterns, rainfall trends, and their variability
- Extreme events like landslides related to geotechnical engineering are caused by climate change, particularly in Asia-Pacific Regions

Subject of analysis: landslides

- ✓ One of the most critical disaster related geotechnical engineering
- ✓ Extreme rainfall is main factor of landslides

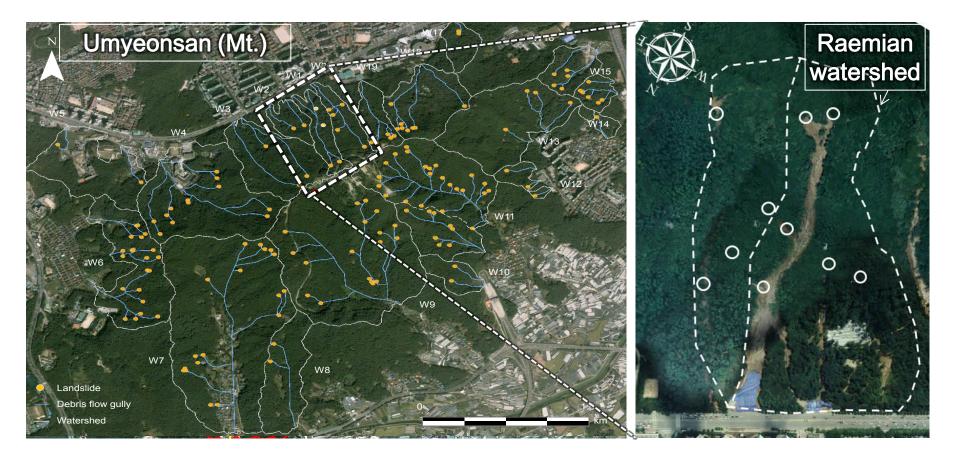
3 Schematic diagram of study procedure



Study area: Umyeonsan (MT.)
Prediction model for landslide analysis
Analytical model for the debris flow

Green Infrastructure Technology for Climate Change

Umyeonsan (Mt.) landslide in July 2011



- Umyeonsan(Mt.) is located in south-east of Seoul
- 151 landslides and 33 debris flows occurred in 20 watersheds
- The accumulated rainfall of 24-h was 424.5 mm.

(Jeong et al., 2015)

1 Study area

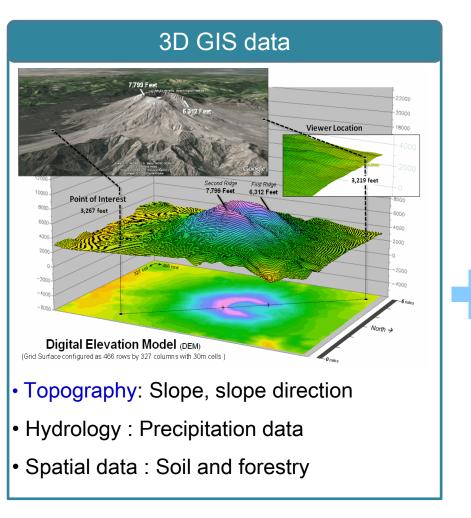
Study area: Raemian watershed, Umyeonsan (Mt.)

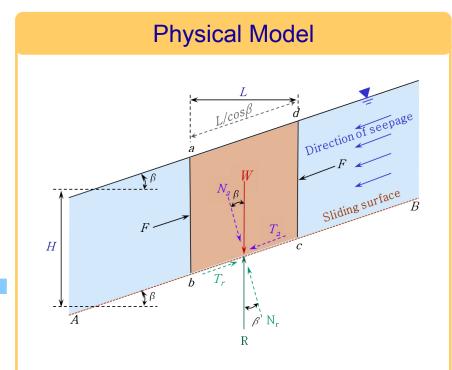
(Jeong et al., 2015)

2Prediction model for landslide analysis

"Prediction model for rainfall-induced landslide based on 3D spatial data"

Considering rainfall intensity, duration and real-time rainfall


Predicting the rainfall infiltration-groundwater flow from landslide mechanism

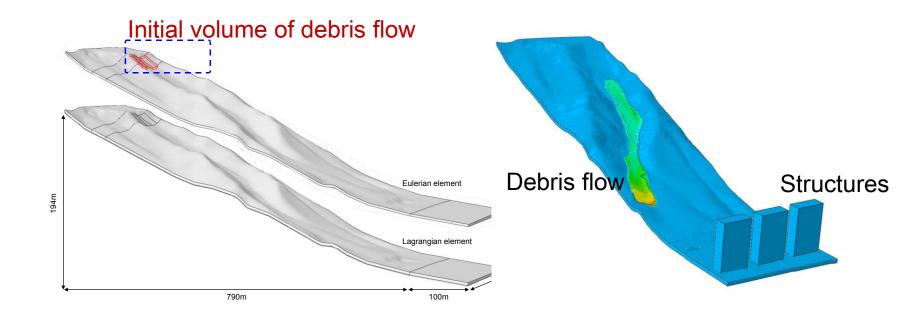

Background 🤌

Reflecting topography, hydrology, spatial characteristics

Initial volume of debris flow based on regional scale hazard map (by applying future design rainfall)

2 Prediction model for landslide analysis

- Geotechnology: Unsaturated soil
- Infiltration : Modified G-A Model
- Failure model : Infinite slope model

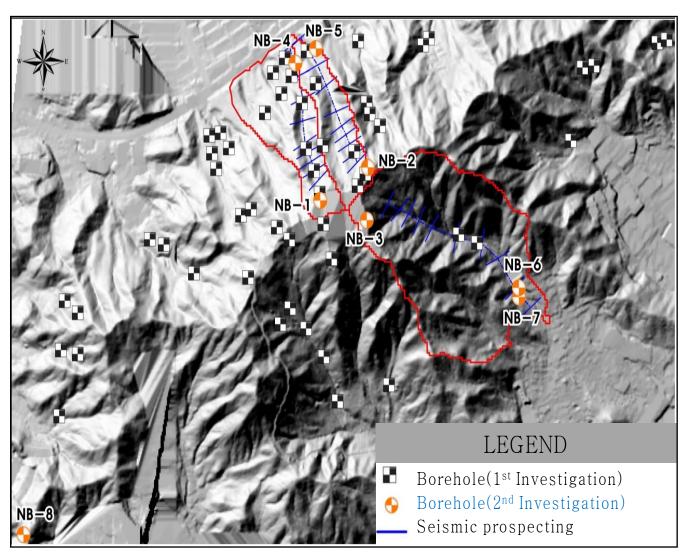

(Kim et al., 2014)

$\boldsymbol{\mathcal{3}}$ Analytical model for the debris flow.

Debris flow model with erosion and entrainment of soil

- ✓ Simulation of debris flow based on Coupled Eulerian-Lagrangian (CEL) method
- ✓ Considering the erosion and entrainment of soil layer by debris flow

(Lee et al., 2016)



Site investigation and input parameters
Applied future design rainfall
Result of landslide analysis
Debris flow simulation

1 Site investigation and input parameters reconclosy tor Climate Change

Site investigation

- Seismic Prospecting
- In-Situ Permeability
- SWCC
- Borehole Shear Test
- Direct Shear Test
- SPT

1 Site investigation and input parameters

Input parameters: soil properties and depth

✤ Soil Property

Parameters	Values	Description	
Hydraulic conductivity, k _s	8×10^{-4} cm/s	In-situ permeability	
i na 🖶 n da sta di karang	(28.8 mm/h)	test	
Initial water contents, θ_i	28.0-32.0 (30.0) %	SWCC test	
Water-content deficit, $\Delta \theta$	0.20	SWCC test	
Wetting front suction	830 mm	SWCC test	
head, ψ_f			
Soil cohesion, C'_s	10.2-12.8 (11.0) kPa	Direct shear test,	
		borehole shear test	
Soil friction angle, φ'	22.4-26.6 (26.5)°	Direct shear test,	
		borehole shear test	
Total unit weight of soil, γ_t	17.0-18.5 (18.0) kN/m ³	Laboratory test of density	
Additional shear strength	1.0 kPa	Suggested by Norris (2008)	
by roots of tree, C'_r			
Uniform load by tree, q_0	0.253 kPa	Suggested by KFRI (2006)	

(Kim et al., 2014)

Soil Depth

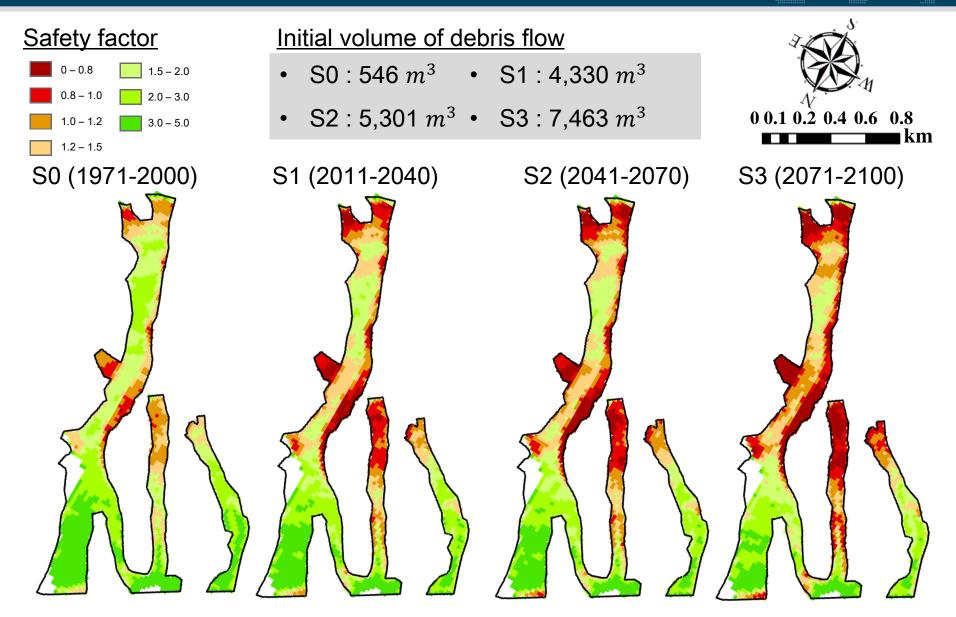
• Raemian watershed : 4.0~10.0 m

2Applied future design rainfall

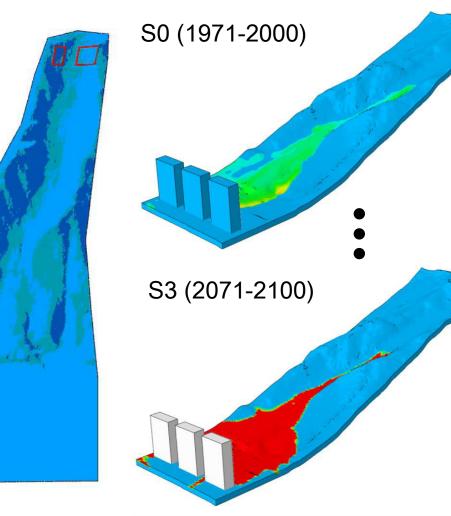
Green Infrastructure Technology for Climate Change

I Future design rainfall based on climate change scenario

- ✓ Future period: S0 (1971-2000), S1 (2011-2040), S2 (2041-2070), S3 (2071-2100)
- ✓ Applied rainfall: 100-year return periods, 24-hour duration


Applied rainfall intensity

- S0 (1971-2000): 18.16 mm/hr
- S1 (2011-2040): 24.71 mm/hr
- S2 (2041-2070): 26.65 mm/hr
- S3 (2071-2100): 32.53 mm/hr


(Lee et al., 2015)

$\boldsymbol{\mathcal{3}}$ Result of landslide analysis

Green Infrastructure Technology for Climate Change

Impact assessment of urban infrastructure (from the result of debris flow simulation)

Damaged area and height

• S0 : 7,802 m², 0.5 - 1 m

Green Infrastructure Technology for Climate Change

- S1 : 61,874 m³, 1 1.5 m
- S2 : 75,749 *m*², 1 1.8 *m*
- S3 : 106,643 *m*³, 1.5 2 *m*

Expected damage cost

- S0 : € 395,672.5
- S1 : € 4,465,180.91
- S2 : € 6,549,371.71
- S3 : € 10,227,664.08

Summary

Green Infrastructure Technology for Climate Change

Period for analysis (yr)	Applied rainfall intensity (mm/hr)	Initial volume of debris flow (m ³)	Damaged areas (m ²)	Damaged heights (<i>m</i>)	Expected damage costs (€)
S0 (1971-2000)	18.16	546	7,802	0.5-1.0	395,673
S1 (2011-2040)	24.71	4,330	61,874	1.0-1.5	4,465,181
S2 (2041-2070)	26.65	5,301	75,749	1.0-1.8	6,549,372
S3 (2071-2100)	32.53	7,463	106,643	1.5-2.0	10,227,664

Green Infrastructure Technology for Climate Change

Conclusions

By using some ewll=designed model and climate scenario, we conducted the susceptibility assessment of landslides for a case study of mountain Umyeonsan, estimating the impacts and the expected costs of infrasturctures due to landslides and debris flow under climate change.

ucture Technology for Climate Cl

- From the results of this study, we can conclude that the climate change-induced geo-disasters like landslides or debris flow will be increased, and the damage of infrastructures due to the geodisasters will be increased.
- The result of these study can be useful information for early warning system of landslides and debris flows.

Inank You http://www.git4cc.com

World Conference on **Climate Change**

한국연구제단