

Dr Mohammad Othman MB BS, PhD

CERVICAL IMMUNOBIOLOGY IN WOMEN AT RISK OF PRETERM LABOUR

BACKGROUND

- × Preterm birth.
- × Incidence 9% to 11%.
- Maternal infection is present in 30% to 50% of all preterm births.

(Gonc 2002; Romero 2002)

Stages of Ascending infection:

- I -cervicitis
- II -deciduitis
- III -amnionitis
- IV -fetal bacteraemia and sepsis

Stages of ascending infection Adapted from Romero 1988 with permission

- Microbial bioactive substances act directly on cervical collagen and fetal membranes
 premature cervical ripening and weakening the fetal membranes
 PPROM
- Microorganisms stimulate the maternal Immune system specially monocytes and macrophages phospholipase A2 prostaglandins E2 and F2α

{Bernal 1993; Hay 2001; Howe 1999; Lamont 2001}

×Activated Macrophages produce Cytokines such as Tumour Necrosis Factor (TNF) and Interleukin (IL1a, IL1b, IL6, IL8). Recent studies revealed a positive correlation between high levels of some cytokines and the onset of preterm labor.

{Bernal 1993; Dodson 1988; Howe 1999}

RATIONALE

- Ascending infection occurs in the presence of a defective cervical barrier (immunologically and morphologically).
- Only 3 studies conducted to understand cervical macrophages (Bokstrom 1997, Sakamoto 2005, Whitworth 2007).
- All previous studies used manual counting of macrophages.
- Strikingly, they found that women with a low macrophage count were more likely to have preterm birth compared with women who had normal cervical macrophage count (Odds Ratio 4.9, 95%CI 1.5 to 18.7; P 0.0037).
- There is no studies on cervical volume and vascularisation changes.

OBJECTIVE

x investigate to what extent a defective cervical barrier is a contributory factor to recurrent preterm labour.

HYPOTHESIS

 Patients at high risk of preterm labour have lower numbers of macrophages and in turn less vascular cervix.

IN ORDER TO ACHIEVE OUR OBJECTIVE

- Measure cervical volume and vascularity by 3D volume measurement and 3D Power Doppler.
- We investigate what proportion of CD14+ cells are macrophages (CD14 is widely used as a macrophage marker; however T cells, dendritic cells and granulocytes may also express CD14).

PROTOCOL

- Hospital prospective observational cohort non interventional study
- × Conducted for 60 months 10/2007-9/2012
- Women between 13 and 17 weeks are informed about the study if they agree to participate consent cervical sample & 3D Ultrasound

METHODOLOGY

- × 3 D Ultrasound scan to measure cervical length and volume.
- × 4DView programme for the analysis.

X D Power Doppler to evaluate cervical vascularisation.

A cytobrush is used to collect cervical cells then the tip of the brush is soaked in a specimen pack of PBS and PSG, which is processed in the same day.

* fluorescent labelled monoclonal antibodies are used for the labelling of the samples.

Leukocyte Type	Monoclonal antibodies
Granulocytes	CD66b (specific), CD49d, CD16
Lymphocytes T cells	CD3 (specific).
	CD19 (specific).
B cells	CD16, CD49d
NK cells	
Dendritic cells	CD1a (specific), CD49d
Monocytes	CD14, CD163, CD49d
Macrophages	CD14, CD163

 fluorescence activated cell sorting (FACs) is used for the analysis of the samples.
WinMDI 2.9 programme is used to extract Data.

DEMOGRAPHIC RESULTS

Participants N=356	Patients N=156	Controls N=200	Ρ
Age Median (range)	31.5 <mark>(</mark> 20-39)	29 (19-39)	0.09
Smoking N (%)	6 <mark>(</mark> 27)	11 (22)	0.32
Parity Median (range)	1 (1-6)	1 (1-3)	0.166
Previous preterm birth Median (range)	1 (1-6)	0 (0)	0.0001
Gestational age Median (range)	16 (13-16)	15 (13-16)	0.91

LEUKOCYTES RESULTS

Cell count /10 ⁴ cells	PTL <34 ⁺⁰ N= 68	Controls N= 200	Р
Macrophages median (range)	14 (10-21)	16 <mark>(</mark> 4-53)	0.11
Monocytes median (range)	0 (0-1)	0 (0-2)	0.19
B cells median (range)	0 (0)	0 (0-2)	0.73
T cells median (range)	0 (0-3)	0 (0-26)	0.12
Granulocytes median (range)	0 (0-23)	0 (0-54)	0.17
Dendritic cells median (range)	0 (0)	0 (0-21)	0.14

Macrophages were the most common leukocytes

OBSTETRIC RESULTS

Participants	Patients	Controls
N= 356	N= 156	N= 200
Preterm delivery < 34 ⁺⁰ N (%)	68 (43.6%)	0 (0%)
Delivery > 34 ⁺⁰ N (%)	88 (56.4%)	200 (100%)
Cesarean section N <mark>(</mark> %)	4 (2.6%)	24 (12%)
Neonatal death N <mark>(</mark> %)	13 (8.3%)	0 (0%)
Admission to NICU N <mark>(</mark> %)	20 (12.8%)	0 (0%)

ULTRASOUND RESULTS

Cervix mean (SD)	PTL <34 ⁺⁰ N= 68	Controls N= 200	Ρ
Length (mm)	40.7 (4.3)	44.4 (7.8)	0.04
Volume (cm ³)	32.5 (10.1)	33.1 (14.7)	0.31

Significant association between cervical length and preterm labour, but not the cervical volume

3D ULTRASOUND WITH POWER DOPPLER RESULTS

Doppler indices median (SD)	PTL <34 ⁺⁰ N= 68	Controls N= 200	P
Vascular Index (%)	31.3 (8.7)	15.5 (9.6)	0.0006
Flow Index (unit)	36.1 (2.6)	35.2 (2.9)	0.61
Vascular Flow Index (unit)	12 <mark>(</mark> 3.5)	5.3 (3.7)	0.0009

Inverse association with preterm labour may be due to preconceptional hypervascularity

CERVICAL MACROPHAGES AND CERVICAL 3D ULTRASOUND PARAMETERS CO-RELATIONS

No significant correlation was found between cervical macrophages and cervical length, volume, vascular index, flow index, vascular flow index.

CONCLUSIONS

- Flowcytometery can be used for cervical leukocytes characterisation and beneficial in resolving any concerns about blood contamination
- The most prevalent cervical leukocyte was the macrophages
- There was a significant association between cervical length and preterm labour
- Cervical volume may not be associated with preterm labour
- No correlation found between cervical macrophages and any of the cervical 3D ultrasound parameters measured
- There is a real requirement for more research on cervical leukocyte population. Adding the 3D ultrasound and power Doppler will provide voluble information about the cervical morphology

Mohammad Othman

Cervical leukocytes and 3D ultrasound in preterm birth high risk women

Non-interventional study

