Progress on the biocontrol of foodborne pathogens on leafy greens with non-pathogenic microbes

M.O. Olanya and D.O. Ukuku

USDA Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA

Outbreaks of food-borne illnesses

Produce	Outbreaks	Year	Pathogens
Frozen product	19 States (35 cases)	2013	E. coli 0121
Cucumber	18 States (81 cases)	2013	Salmonella Saintpaul
Spinach & spring mix	5 States (33 cases)	2012	E. coli O157:H7
Raw clover sprouts	11 States (29 cases)	2012	E. coli O26
Cantaloupe	24 States (261 cases)	2012	Salmonella Typhimurium
Unidentified	9 States (18 cases)	2012	E. Coli O145 (STEC)
Romaine lettuce	10 States (60 cases)	2011	E. coli O157:H7
Cantaloupes	28 States (147 cases)	2011	L. monocytogenes
Cantaloupes	9 States (20 cases)	2011	Salmonella Panama
Alfalfa / spicy sprout	5 States (25 cases)	2011	Salmonella Entiritidis
Fresh Papaya (pawpaw)	25 States (106 cases)	2011	Salmonella Agona

Source: CDC, Atlanta, GA

Inhibition of the growth & survival of human pathogens by *Pseudomonas fluorescens*

Biocontrol	Targeted pathogen	Produce	References	
P. fluorescens	Salmonella enterica	Alfalfa sprout	Fett 2006	
P. fluorescens	S. enterica	Bell pepper	Liao & Fett, unpublished	
	Listeria monocytogenes			
	Escherichia coli O157:H7			
P. fluorescens	L. monocytogenes	Endive	Carlin <i>et al.</i> 1996	
P. chlororaphis				
P. fluorescens	S. enteritidis	In <i>vitro</i> assays	Cheng <i>et al</i> . 1995	
	E. coli 0157:H7			
Microbial mix	S. enterica	Alfalfa sprout	Matos & Garland 2005	

Objectives

- To determine the efficacy of *P. fluorescens* for biocontrol of *E. coli* O157:H7 on spinach as a post-harvest intervention strategy.
- Evaluate the effects of storage temperatures and time on biocontrol efficacy on leafy green.
- Assess the inactivation of Salmonella serovars by P. fluorescens and P. chlororaphis.

RESULTS

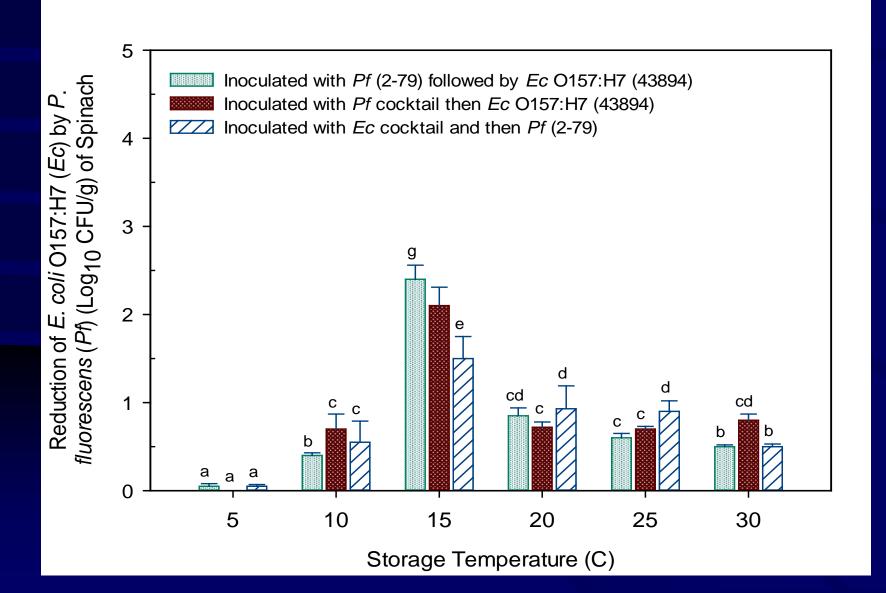
Progress in biocontrol of *E. coli* O157:H7 and *Salmonella* serovars on spinach and tomato

Recovery of *E. coli* O157:H7 (*Ec*) and *P. fluorescens* (*Pf*) and both bacteria (*Ec* & *Pf*) from broths and inoculated spinach

Ec

Ec and Pf

Pf


CT-SMAC

Efficacy of *P. fluorescens* on the reduction of *E. coli* O157:H7 (*Ec*) on spinach (20 °C)

Treatment	24 Hrs	48 hrs
<i>P. fluorescens</i> (Pf) and <i>Ec</i>	Reduction of <i>Ec</i> (Log CFU/g)	Reduction of <i>EC</i> (Log CFU/g)
<i>Ec</i> 43894 + <i>Pf</i> 2-79	0.95 <u>+</u> 0.45b	0.57 <u>+</u> 0.12a
<i>Ec</i> 43894 + <i>Pf</i> Q287	2.10 <u>+</u> 0.00a	0.48 <u>+</u> 0.21a
<i>Ec</i> 43894 + <i>Pf</i> 2-79	1.60 <u>+</u> 0.00ab	0.70 <u>+</u> 0.13a
Ec 43895 + <i>Pf</i> 2-79	1.05 <u>+</u> 0.65b	0.70 <u>+</u> 0.02a
<i>Ec</i> 43895 + <i>Pf</i> Q287	1.50 <u>+</u> 0.20ab	0.48 <u>+</u> 0.24a
<i>Ec</i> 43895 + <i>Pf</i> 2-79	0.80 <u>+</u> 0.16b	0.53 <u>+</u> 0.11a

Biocontrol of *E. coli* O157:H7 (*Ec*) by *P. fluorescens* (*Pf*) at various temperatures

P. chlororaphis 30-84 – PAF

P. chlororaphis 30 84 & S. Montevideo

P. chlororaphie 30 84 & S. Montevideo

Reduction of Salmonella populations (Log Cfu/ml) by *P. fluorescens* (*Pf*) and *P. chlororaphis* in co-cultures

<i>Salmonella</i> serovars	P. fluorescens 2-79	<i>P. chlororaphis</i> 30-84	P. chlororaphis B-977
<i>Salmonella</i> Typhimurium	0.82a	0.60a	0.70a
<i>Salmonella</i> Montevideo	1.36a	0.69a	0.18a
<i>Salmonella</i> Poona	0.06b	0.47a	1.47b
Means	0.74	0.58	0.78
LSD (0.05)	0.55	0.47	0.62
			USDA

Efficacy of *Pseudomonas* strains for biocontrol of *Salmonella* serovars on spot-inoculated tomatoes

Biocontrol	Salmonella	Salmonella
applications	Montevideo (Log CFU/g)	Typhimurium (Log CFU/g)
P. chlororaphis 30-84	0.95 <u>+</u> 0.18a	1.35 <u>+</u> 0.24ab
P. chlororaphis B-997	0.74 <u>+</u> 0.12a	2.00 <u>+</u> 0.08a
P. fluorescens 2-79	0.90 <u>+</u> 0.11a	1.07 <u>+</u> 0.09ab
P. fluorescens Q2 87	0.53 <u>+</u> 0.13a	0.49 <u>+</u> 0.11b
P. fluorescens Q8 R1	0.51 <u>+</u> 0.10a	0.46 <u>+</u> 0.07b

Summary

- Reduction of *E. coli* by *P. fluorescens* ranged from 0.5-2.1 log Cfu/g of spinach. Low to moderate reductions of *Ec* populations by *Pf* may be attributed to equal ratios of biocontrol to the pathogen .
- Efficacy of biocontrol was significantly (P < 0.05) affected by storage temperatures. Suppressive effects were greater at 15 °C (1.5-2.4 log Cfu/g) than at other temperatures (<0.93 log Cfu/g).
- Inoculation sequences affected the efficacy of biocontrol. Pre-emptive inoculations, simultaneous & post-pathogen inoculations imply competitive exclusion and others contributing to biocontrol efficacy.

Summary

- Pseudomonas strains (biocontrol agent) and *Salmonella* serovars were readily recovered and enumerated on PAF and XLT-4 media.
- Biocontrol of *Salmonella* serovars by *P. fluorescens* and *P. chlororaphis* varied in co-cultures.
- On tomatoes, mean reductions ranged from 0.25-2.00 log Cfu/g of produce (low to moderate).
- As a post-harvest intervention measure, the addition of competing bacteria such as *P. fluorescens* or *P. chlororaphis* may supplement physical and chemical measures on produce.

Acknowledgements

Janysha Taylor for technical support

USDA-ARS collaborators

