Glycosylation regulates CD38 assembly on the cell surface

GLYCOBIOLOGY 2015, August 12, 2015, Philadelphia

Miki Hara-Yokoyama

Tokyo Medical and Dental University (TMDU), Japan

Outline

- Introduction of CD38
- Aim of this study
- The structural analysis of assembly
 - the extracellular domain of CD38 in solution
 CD38 on the cell surface
- The functional significance of the assembly
- The regulation by glycosylation

Introduction of CD38

The leukocyte cell-surface antigen CD38 is a multifunctional protein.

Ectoenzyme

Raft-dependent signaling molecule

CD38 is the major NAD⁺ glycohydrolase in mammals.

Cyclic ADP-ribose triggers intracellular calcium mobilization in an IP₃-independent manner.

CD38 associates with various supramolecular complexes within lipid rafts.

Cholesterol/sphingolipid-enriched membrane domain (lipid raft)

T cells	CD38/CD3/Lck/LAT
B cells	CD38/BCR/CD19/CD81
NK cells	CD38/CD16
Monocytes	CD38/MHC Class II/CD9
Dendritic cells	CD38/CD83/CD11b/CD81

Aim of this study

Structural basis & functional significance

Tetrame

The structural analysis (the extracellular domain of CD38 in solution)

The full-length and the C-terminal-truncated extracellular domains of mouse CD38 exist as homodimers in solution.

Homophilic interfaces were found in the crystal packing of the C-terminal-truncated extracellular domain of CD38 !

Concept of crystal packing

No information

This study (2EG9)

Previous study (1YH3)

The monomeric structure was not significantly altered by the truncation, except the loss of the α 9 helix and the fluctuation of the α 4 helix.

M.Hara-Yokoyama et al, Structure 20: 1585-1595 (2012)

Four types of interfaces (I-IV) were found in the crystal packing of mCD38(R48-F288).

The results of the G68E mutation support the interaction between the α 1 helices of the extracellular domain of CD38 in solution.

The G68E mutation should disrupt the type I interface.

α1 helix ⁶⁴ 67 69 71 75 KHFSDIFLGRCLIYTQI KHFSDIFLGRCLIYTQI

Analytical ultracentrifugation (sedimentation equilibrium)

The BS³-dependent crosslinking likely occurs via the type III interaction mode.

The dimer via the type I interaction mode exist in equilibrium to form a tetramer via the type II/III interaction mode, which is compatible with membrane association.

The structural analysis (CD38 on the cell surface)

Are the interfaces present in CD38 on the cell surface?

Site-specific crosslinking on the cell surface with an expanded genetic code.

Hino et al, Nature Methods 2:201-206 (2005), Nature Protocol 1: 2957-2962 (2006)

The crosslinking occurs between CD38 molecules and the type I and type II interfaces are involved, suggesting the tetramerization of CD38 on the cell surface.

Only the oligosaccharides attached to the N213 residue remained as the high-mannose-type.

The processing of the N-glycan of CD38 is compatible with tetramerization.

Within the tetramer, the processing enzymes are not accessible to the N213 residues.

The functional significance of tetramerization

Evaluation of the significance of the tetramerization of CD38 on the cell surface.

To impair the type I interface

G68E

To affect the type III interface

C-terminal deletion C291A, C300A, C291A/C300A

Both the I and type III interfaces are crucial for the tetramerization on the cell surface.

The tetramer structure (both type I and II/III) is required for the catalytic activity of CD38 in A20 cells.

The tetramer structure is required for the association of CD38 with DRMs in A20 cells.

A20 cells expressing full-length CD38 A20 cells expressing truncated CD38

The effect of glycosylation

The C-terminal truncation did not alter the amount of nonglycosylated CD38 in DRMs.

The absence of the N-glycans attached to N104 and N223 enables the formation of the "type IV" interface in the case of cell-surface CD38.

The N-glycans probably regulate the assembly of CD38 on the cell surface by inhibiting the "aggregating" type IV interface.

Summary

M.Hara-Yokoyama et al, Structure 20: 1585-1595 (2012)

Collaborators

Tokyo Medical and Dental University (TMDU)

Kazue Terasawa Satoru Harumiya Katarzyna A. Podyma-Inoue Takeshi Kasama Hiroshi Takayanagi Masaki Yanagishita

RIKEN (SSBC)

Mutsuko Kukimoto-Niino Nobumasa Hino Kensaku Sakamoto Chiemi Mishima-Tsumagari Yoko Kaitsu Tomoko Matsumoto Motoaki Wakiyama Mikako Shirouzu Yoshio Hirabayashi Shigeyuki Yokoyama National Institute of Health Sciences

Satsuki Itoh Noritaka Hashimoto Yoko Hiruta Nana Kawasaki

Musashino University Naoko Ustunomiya-Tate

University of Toyama Kiyoshi Takatsu

RIKEN (BSI) Yoshio Hirabayashi

University of Tokyo Toshiaki Katada

We identified the interfaces contributing the tetramer formation.

The dimerization of core dimers provides a structural basis for the previously reported tetramerization of CD38 on the cell-surface.

CD38の細胞膜上での四量体構造は機能と密接 に関与する

Aplysia ADP-ribosyl cyclase (cytosolic protein) 1LBE BST1/CD157 (GPI-anchored protein) 1ISF

CD38 (transmembrane protein) 1YH3

M.Hara-Yokoyama et al, Structure 20: 1585-1595 (2012)

CD38は膜ドメインに存在する

CD38 is recognized as a negative prognostic indicator in B-CLL patients.

The dimer via the type I interaction mode is further considered to exist in equilibrium to form a tetramer via the type II/III interaction mode, which is compatible with membrane association.

Updated results of a key Phase 1/2 trial testing the potential new myeloma therapy daratumumab were released.

"Daratumumab continues to show substantial promise as potential new treatment for multiple myeloma (ASCO2015)" Publihsed: May 30, 2015