World Congresson

Climate Change

October 24-26, 2016 Valencia, Spain

Efficacy of managed aquifer recharge to reduce the impact of climate change on coastal aquifers

Consiglio Nazionale delle Ricerche, IRSA, Sede Secondaria di Bari. via F. De Blasio, 5, 70132 Bari, Italy

Costantino Masciopinto, Isabella Serena Liso and Michele Vurro

- Study area: geology, water quality
- Driver: Sea-level rise
- Impacts: Coastline displacement, Groundwater availability reduction
- Adaptation: MAR & DSS
- Conclusion

Tested area: Fractures coastal aquifer of Ostuni (Southern Italy)

- Average rainfall < 600 mm/y: natural recharge is unable to refill groundwater sufficiently.
- Absence of relevant surface water sources: groundwater has traditionally been freshwater source for locals
- Agriculture is the main economic activity in Apulia Region
- Total demand of water is not enough to supply the total uses
- Freshwater is coming from aquifer

Hydrogeological features

1= mesozoic dolomitic-limestone rocks; 2 = Appennine rocks; 3 = Plio-pleistocenic sediments; 4 = mail coastal springs; 5 = hydrogeological boundary; 6 = groundwater flow direction

Friday, November 11, 2016

IRS

- Study area: geology, water quality
- Driver: Sea-level rise
- Impacts: Coastline displacement, Groundwater availability reduction
- Adaptation: MAR & DSS
- Conclusion

Data collected from tide-gauge stations during 2000-2014

- Study area: geology, water quality
- Driver: Sea-level rise
- Impacts: Coastline displacement, Groundwater availability reduction
- Adaptation: MAR & DSS
- Conclusion

Water Salinity Increase in Simulated Well

SCENARIO UNTIL 2200

• <u>Coastline advancement: range</u> 40-600 m

BEST FIT CONSTANTS

- Cso = 1,54 g/L
- As = 12,02 g/L
- Ds = 592,65 m

PARAMETERS

- Csalt salt concentration in well
- d distance between well and Ghyben-Herzberg interface

 $C_{salt} = C_{s0} + A_s \left[exp - \frac{d}{D_s} \right]$

Friday, November 11, 2016

October 24-26, 2016 Valencia, Spain

1. Estimation of climate change impacts on groundwater discharge: reduction of 60 L/s of the Ostuni freshwater discharge during year 2200

Li= Intrusion length, due to 2 m LSLR, derived from soil digital elevation model;

Ld= Current intrusion toe position defined by groundwater flow model;

Q0 = Current groundwater (freshwater) outflow, without sea intrusion (i.e., or Li=0);

B = Actual Saturated thickness of groundwater (freshwater);Hs = Freshwater thickness at the outflow section;

2. Evaluationof surfacewater qualitystatus atOstuni TestArea

		19/11/14	13/01/15	17/2/15	17/03/15	26/05/15	14/07/15	Mean	TVs
Basic analysis									
Total Suspended solids	g/L					10	31	21	
COD	mg O ₂ /L	51	39	29	34	24	28	34	
Ammonia nitrogen	mgN/L	0	10	5	3	3	5	4	
Nitric nitrogen (N-NO3)	mgN/L	7	7	4	5	5	6	6	
Nitrous nitrogen (N-NO2)	mgN/L	0.0	2.3	0.9	2.1	0.7	0.8	1.1	0.5
Phosphorous (P-PO4)	mgP/L	7						7	
pH		7	7	7	7	8	7	7	
Potassium (K+)	mgK/L					36	57	47	
Salinity related analysis	μS/cm								2000
Electrical conductivity		1647	1730	1859	1932	1541	1590	1717	
Microbiological analysis	CFU/mL								
Total bacteria count at 22 °C	CFU/mL	553	783	707		917	4660	1524	
Total bacteria count at 36°C	MPN/100mL		4983	4533	5760	7600	10767	6729	
Total coliforms	MPN/100mL	31783	5245	5618	6858	34733	45867	21684	
E. coli	CFU/100mL	3638	104	106	600	4537	3733	2120	10
Enterococci	CFU/100mL		1168	130	2204	1598	1787	1377	
Clostridium spores	PFU/100mL	2000	3567	2077	5450	5467	7500	4343	
Bacteriophages (somatic coliphages)	number/L	600	2367	1500	3425	3400	7650	3157	
Giardia cysts	number/L			68	36		70	58	
Cryptosporidium oocysts				6	4		3	4	
Enterovirus	particles/L						2.49E+05	2.49E+05	0
Adenovirus	particles/L						4 70F+03	4.70E+03	0

In red color are reported concentrations over threshold values (TV) to assess the good chemical status of Italian surface waters (D. Lgs 30/2009) and over main quality parameters (D. Lgs n. 185/03) for agricultural reuse of municipal wastewater effluents

Evaluation
of ground water quality
status at
Ostuni Test
Area

		19/11/14	13/01/15	17/2/15	17/03/15	26/05/15	14/07/15	Mean	TV
Basic analysis									
Total Suspended solids	g/L					22	10	16	
COD	mg O ₂ /L	56	13	11	12	11	14	19	
Ammonia nitrogen	mgN/L	0	0	1	0	0	0	0	
Nitric nitrogen (N-NO3)	mgN/L	3	3	3	2	2	3	2	
Nitrous nitrogen (N-NO2)	mgN/L	0.0	0.1	0.0	0.0	0	0.0	0.0	0.5
Phosphorous (P-PO4)	mgP/L	13						13	
pH		7	7	7.125	6.975	7	7	7	
Potassium (K+)	mgK/L					31	35	33	
Salinity related analysis									2000
Electrical conductivity	μS/cm	3954	4934	4763	5728	5410	5428	5036	
Misushialagiaalagahaia	CELL/ml								
Iviicrobiological analysis	CFU/mL	OE	400	100		260	252	270	
Total bacteria count at 22°C	CFU/mL	65	400	100		203	505	2/9	
lotal bacteria count at 36°C	mL	-	450	286	386	552	608	456	
Total coliforms	MPN/100	30800	155	788	291	1338	1280	5775	
E coli	CELL/100m	50000	155	/00	251	1550	1200	5775	
2. con	L	67	1	2	1	78	8	26	10
Enterococci	CFU/100m		54					454	
	L	-	51	22	21	369	292	151	
Clostridium spores	PFU/100m L	200	500	475	1725	1330	1950	1030	
Bacteriophages (somatic									
coliphages)	number/L	0	0	0	0	0	0	0	
Giardia cysts	number/L			1			0	1	
Cryptosporidium oocysts				0	0		1	0	
Enterovirus	particles/L						5.07E+04	5.07E+04	0
Adenovirus	particles/L						1.50E+03	1.50E+03	0

In red color are reported concentrations over threshold values (TV) to assess the good chemical status of Italian surface waters (D. Lgs 30/2009) and over main quality parameters (D. Lgs n. 185/03) for agricultural reuse of municipal wastewater effluents

- Study area: geology, water quality
- Driver: Sea-level rise
- Impacts: Coastline displacement, Groundwater availability reduction
- Adaptation: MAR & DSS
- Conclusion

Friday, November 11, 2016

October 24-26, 2016 Valencia, Spain

		Enter or select a value	Enter or select a value					
Is R VES NO	a confined groundwater ?	Are there inperme	able layers from soil to the w	rater table ?	aı			
			1.1.1.1	/3				
astewater Treatme	nts RECH	ARGE METHOD LIMITA	ATIONS					
astewater Treatme	nts RECH	ARGE METHOD LIMITA	ATIONS					
astewater Treatme	nts RECH On Wells	ARGE METHOD LIMITA LIMITATIO On Catchments	ATIONS ONS On Fields	On Channels				
aslewater Treatme	nts RECH On Wells None	ARGE METHOD LIMITA LIMITATIO On Catchments Total	ATIONS ONS On Fields Total	On Channels None				
astewater Treatme	nts RECH On Wells None Not recommended	ARGE METHOD LIMITA LIMITATIO On Catchments Total None	ATIONS ONS On Fields Total None	On Channels None None				

A DSS has been implemented (<u>https://youtu.be/xhmQti2zrgs</u>)

"A suitable tool for sustainable management of groundwaters" by C. Masciopinto, M.Vurro, V.N. Palmisano, I.S. Liso (WRM under review)

MAR implementation using DSS

Wastewater Treatments

Definition of required wastewater treatments

Please note: the quality of water available for artificial recharge will be defined by your Yes/No answers.

Water constituent		Regulation Limit	Proposed Quality	Unit	
Прн		6-8	6.5-8	n.a.	
Rough materials		absent	n.a.	n,a.	
Sedmentable solids		25	0.5	mi/L.	
TSS (total suspended solids)		25	1.0	mg/L	
BOD5	Element Concentration	100	X	mg O2/L	
000		-		mg O2/L	-
Alumnium	Internet and the			mg/L	
Arsenic	T55 (total suspended solids	;)		mg/L	
Dartum		4.35.000.3		mal	
Boron	is the concentration greater that	n 1.21+000 ?		mg/L	
Total chromium	V USE S.A.T. SAT UNION	11		mg/L	-
Chronium VI	per sole services	- Province		mg/L	
🗆 tron				mail	
Nanganese	1			mg/L	
Mercurium	Yes	No C	Cancel	mgA	
Nichel				mgA	
Lead	-	0.1	0.05	mg/L	
Copper		0.1	0.1	mg/L	
Selenium		0.002	0.002	maA	
🗋 Tin		3	3	mg/L	
🗌 Vanadio		0.1	0.1	mg/L	
2nc		0.5	0.3	mg/L	
🗌 Cyanide	n.a.	0.05	mail		
Total hardness		n.a.	n.a. 50 France degrees		
			< Back	Next > Car	ncel

Estimated recovered freshwater with MAR: 80 L/s

- Study area: geology, water quality
- Driver: Sea-level rise
- Impacts: Coastline displacement, Groundwater availability reduction
- Adaptation: MAR & DSS
- Conclusion

The cost rate of MAR: 0.05 Euro/m³

Annual payback rate: 60,000 €

Maintenance costs: 6,000 €

Electric power costs: 5,000 €

The specific tariff is estimated by considering the total annual volume injected (or recovered 80 L/s), and assuming a recharge period of seven months (i.e., 210 days): the MAR tariff is about 0.05 €/m³.

This value is about 5% of the base tariff of 1 Euro/m³ applied in Puglia for domestic drinking water supplies.

Friday, November 11, 2016

MAR benefits

- MAR actions will recover about 420,000 mc of freshwater, due to reduction of groundwater salinity; this value is the volume of recovered freshwater
- A new seasonal pumping at 80 L/s can provide freshwater supply for touristic area of Ostuni during summer.
- Groundwater up gradient with respect to the recharge plant will have a reduction of groundwater salinity and it can be used for irrigations.

First Geophysical Observatory in Puglia Region (XIII Century)

Thank you for your attention...

... from here we'll help water managers in solving problems

$$\Delta Q = Q_0 - n \frac{b_i^2}{3} \frac{\gamma_f}{\mu_f} \frac{B^2 - H_s^2}{2\delta_{\gamma} [(L - L_d) + L_d]}$$

	Bari	Brindisi	Lecce	Taranto
К	0,0037 m/s	0,0037 m/s	0,008 m/s	0,0008 m/s
В	15 m	15 m	15 m	15 m
Ld	1400 m	1250 m	2800 m	2500 m
L-Ld	157 m	125 m	480 m	190 m
Фо	1 m	1 m	1 m	1 m
Coastline length	80 Km	77 Km	189 Km	116 Km
ΔQ	2,5 Mm3/y	2,5 Mm3/y	9,25 Mm3/y	0,3 Mm3/y
% GROUNDWATER AVAILABILITY REDUCTION	9,7% of current freshwater volume withdrawal for drinking porposes	3,2% of current freshwater volume withdrawal for drinking porposes	11,9% of current freshwater volume withdrawal for drinking porposes	1,2% of current freshwater volume withdrawal for drinking porposes

October 24-26, 2016 Valencia, Spain