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MACROPHAGES

Remarkably versatile cells

Participate in both innate and acquired
immunity through a myriad of cytokines and
low molecular secretory products

Antigen presenting cells
Important cells in hematopoiesis

On the negative side, contribute to pathology
of many chronic diseases ,including
atherosclerosis and Alzheimers disease



Macrophage Origin and Function
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Function

During myelopoeisis, external
differentiating signals regulate the
expression of a set of transcription
factors The combined actions of
these transcription factors
subsequently determine the
expression of myeloid-specific
genes leading to the generation of
monocytes and macrophages

Blood monocytes are an
intermediate stage which then
further differentiate in tissues to
various macrophage populations



Bone Marrow Macrophages

e |L-1 from stromal
macrophages signal to
fibroblasts and endothelial
cells to make growth
factors for myelopoiesis
and lymphopoiesis

* Physical interaction with

developing granulocytes in
granulocyte islets

 Bone marrow macrophages
are target cells for drugs
and environmental
chemicals




ROS and Myeloid Cells

One of the distinguishing biochemical characteristics
of PMNs and macrophages is their ability to
synthesize and release ROS .

One of the primary cellular sources of ROS in
these cell types is a plasma membrane NADPH
oxidase, which generates superoxide .

While myeloperoxidase (MPQ) is found in myeloid
progenitor cells, MPO is found in the differentiated
PMNs and monocytes but not in macrophages .

Another biochemical and metabolic characteristic
which distinguishes macrophages from PMNs and
monocytes is their utilization of mitochondrial
respiration for the generation of cellular energy



Cell Lines and Macrophage
Differentiation

To understand the molecular mechanisms underlying
macrophage differentiation, investigators have turned to
human myeloid cell lines such as HL-60, U937,THP-1 and ML-
1h. These cell lines have served as a basis for differentiation
therapy.

In vitro, these myeloid cell lines continuously proliferate in
suspension culture, and can be induced to differentiate into
macrophages by 12-0-tetradecanolyphorbol-13-acetate (TPA)
or 1,25-dihydroxyvitamin D3.

HL-60 cells can also be differentiated to PMNs by dimethyl
sulfoxide or retinoic acid. As such, these cell lines have been
widely used as cell models for studying the molecular and
cellular aspects of myeloid differentiation.

HL-60 cells do not differentiate to macrophages. However , HL-
60 cells transfected with wild-type p53 gene differentiate to
macrophages not PMNs



Measuring ROS Through
Chemilumigenic Probing
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Measureable endpoints in the ML-1 differentiation model
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THP-1 Cells

Undifferentiated TPA (Sdays)
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PKC Activation Leads to

Production of Mitochondrial ROS
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ROS Signaling Is also
Involved in the
Differentiation of ML-1 Cells
to Macrophages
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ERK ROS '— NAC (antioxidant)
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Superoxide Can Exit from
Resting Differentiated
ML-1 Cells!!!
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