

2nd International Conference and Exhibition on Satellite & Space Missions

July 21-23, 2016 Berlin, Germany

The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco

Meryem TAHRI Ph.D Student Laboratory of Applied Geology, Geomatic and Environnement Faculty of Science Ben M'sik, University Hassan II – Casablanca, Morocco

Outline

- Introduction
- Objectif
- Study area
- Materials and methods
- Results
- Conclusion

The extraction and burning of fossil fuels cause the release of CO₂ and other global warming pollutants into the atmosphere (*IPCC - Working Group II Contribution to AR5, Impacts, Adaptation and Vulnerability* 2014);

• A major decarbonization strategy is to substitute fossil power generation with renewable energy sources (IPCC: Special Report on Renewable Energy Sources

and Climate Change Mitigation., 2011, United Nations, 1997);

Source data_ http://www.nrel.gov/csp/solarpaces/by_project.cfm

Source: National Petroleum Council, 2007, after Craig, Cunningham and Saigo (republished from IEA, 2008b).

Morocco Map of Direct Normal Irradiation

The Middle East and North Africa has vast resources of solar energy due to their Density ۲ of Normal Irradiation (DNI) (DLR - Institut für Technische Thermodynamik - MED-CSP, 2005); 7

Objectif

• The aim objective of our case study is to assess the most appropriate optimal site selection for the implementation of renewable energy in the region of Ouarzazate.

Study area

The study area is located in the southeast of Atlas mountains and includes the region of Ouarzazate

Materials and Methods

Materials and methods

Methods

• GIS have often been used to identify suitable areas for land developments and the use of GIS in sitting analysis started in the late 1970s ;

• AHP techniques were designed to analyze decision problems, generate useful alternative solutions, and to evaluate the alternatives based on a decision maker's values and preferences.

Building suitability models

Goal of study

- Find optimal sites for grid-connected photovoltaic power plants;
- Obtain coverage data that corresponds to the region of Ouarzazate criteria;
- Produce a map showing the suitable areas for solar farms.

Selection of criteria

Criteria	Criteria	Criteria	Factors
Land use Orography	Land use	Location	Distance to urban area (km)
	Slope (%)		Distance to road (km)
	Slope orientation	Climate	Potential solar radiation (kWh/m²/year)

Pair-wise comparison of criteria

Criteria	Climate	Orography	Land use	Location
Climate	1	3,5	5	9
Orography	0,29	1	3	5
Land use	0,2	0,33	1	2,5
Location	0,1	0,2	0,4	1
Total	1,64	5,03	9,4	17,5

The Consistency Ratio = 0,09

Materials (GIS)

Land surface temperature layer

• Convert the digital number (*DN*) into spectral radiance :

L = LMIN + (LMAX - LMIN) * DN/255

where:

L = spectral radiance LMIN = spectral radiance of DN value 1 LMAX = spectral radiance of DN value 255 DN = digital number

Land surface temperature layer

• Convert the spectral radiance to brightness temperature Kelvin (*Tb*) :

$$Tb = \frac{K2}{Ln(\frac{K1}{L}+1)}$$

where:

Tb =	brightness	temperature
------	------------	-------------

K1 = calibration constant 1

K2 = calibration constant 2

• Convert Kelvin to Celsius (*TB*):

TB = Tb - 273

Land surface temperature layer

 Convert the brightness temperature into the land surface temperature (S) :

$$S = \frac{TB}{1 + (\lambda + \frac{TB}{\rho})\ln\varepsilon}$$

where:

- S =land surface temperature
- λ = wavelength of emitted radiance
- ε = emissivity

$$o = h * \frac{c}{\sigma}$$

- h = Planck's constant
- c = light velocity
- σ = Stefan Boltzmann constant

Solar Geographic Information System model

$$S = \sum_{i=1}^n W_i X_i imes \prod_{j=1}^m C_j$$

Layers results

Layers results

Layers results

Final result : Land suitability

Comparaison to other Mediterranean case studies

	Ouarzazate,	Murcia,	Granada,	Karapinar
	Morocco	Spain	Spain	region,Turkey
HighlySuitable	23%	3%	5%	14%

Conclusion

- The majority of the land in Ouarzazate has a high suitability for photovoltaic farm installation;
- The high potential solar radiation, the land surface temperature and the orientation towards the south are unsurprisingly the key factors that increase the suitability of a land;

• The integration of GIS and MCDM techniques provides the decision maker with an innovative approach to sitting problem.

Thank you for your attention

