Photonic Generation of Millimeter Wave Signals for Wireless Applications

Mehdi Shadaram

Department of Electrical and Computer Engineering University of Texas at San Antonio San Antonio, TX

> International Conference and Business Expo on Wireless Communication & Network

Baltimore, USA, September 21-23, 2015

Outline

○ Introduction

- Utilization of Millimeter Waves
- Optical Modulation Scheme
- Harmonic Distortion
- Performance Analysis
- Results

• Conclusion

Millimeter Wave RoF

- Wireless transmission in the lower microwave band is congested by applications such as Wi-Fi, GSM, etc.
- Some other new wireless technologies (e.g. WiMAX) are still handled within the lower microwave regions (2–4 GHz).
- In United States, the 60 GHz band can be used for unlicensed short range (1.7 km) data links with data throughputs up to 2.5 Gb/s.
- Propagation characteristics of the 60 GHz band like oxygen absorption and rain attenuation limits the range of communication systems using this band.
- Geographical consideration is crucial for antenna base stations (BSs) installment.
- Because of large number of required BSs and the high throughput of each BS, deployment of an optical fiber backbone is beneficial.

Why 60 GHz Band?

- Bandwidth-traffic (57 GHz 64 GHz)
- License-Free Spectrum
- Narrow Beam Antennas (Multiple Antennas)
- Highly Directional, "pencil-beam" Signal
- Easy to Install and Align
- Oxygen Absorption and Security (Reduced Interference)

Optical Network for RoF Transmission

Methods of Transmitting the mm-wave Wireless Signals over the Optical Fiber

RF Power Degradation Versus Fiber Length for ODSB, OSSB, OCS Modulation Formats

C. Lim, et. al., "Fiber-Wireless Networks and Subsystem Technologies," Light Tech. J., vol. 28, pp. 390–405, Feb. 2010

Overcoming Fiber Chromatic Dispersion

The fiber dispersion effect on optically transmitted signals is critical to be controlled specifically for long fiber link. For eliminating this impairment OCS and OSSB techniques can be used

ODSB: MZM is biased at $\frac{V_{\pi}}{2}$

OCS; MZM is biased at V_{π}

MZM ER=1000, laser linewidth=2MHz

OSSB Modulation

Dual electrode MZM structure

OSSB mm-wave generation system

After optical filter: At the photodiode

Second Modulator's Output

$$\begin{split} E_{out2} &= E_{in} \{ \frac{1}{2} \ J_0(a\pi) \ J_1(a\pi) \left[\cos(\omega_c + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c)t - \sin(\omega_c + \omega_{rfc})t + \sin(\omega_c - \omega_{rfc})t \right] - J_1^2(a\pi) \left[\cos(\omega_c + \omega_{rf1} + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c - \omega_{rf1})t \right] + \frac{1}{2} \ J_1(a\pi) \ J_2(a\pi) \left[\cos(\omega_c - \omega_{rf1} + \omega_{rfc})t + \sin(\omega_c - 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t - \sin(\omega_c - 2\omega_{rf1} - \omega_{rfc})t + \sin(\omega_c - 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_c + 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t - \sin(\omega_c + 2\omega_{rf1} - \omega_{rfc})t - \cos(\omega_c + 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t - \sin(\omega_c - 2\omega_{rf1} - \omega_{rfc})t - \cos(\omega_c + 2\omega_{rf1} + \omega_{rfc})t + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t - \sin(\omega_c - 2\omega_{rf1} - \omega_{rfc})t - \cos(\omega_c + 2\omega_{rf1} + \omega_{rfc})t + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t + \cos(\omega_{rfc} - \omega_c - 2\omega_{rf1})t - \sin(\omega_c - 2\omega_{rf1} - \omega_{rfc})t + \cos(\omega_c - 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_c - 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_c - 2\omega_{rf1})t - \sin(\omega_c - 2\omega_{rf1} - \omega_{rfc})t + \cos(\omega_c - 2\omega_{rf1} + \omega_{rfc})t + \cos(\omega_{rfc} - \omega_c + 2\omega_{rf1})t + \cos(\omega_{rf1})t + \cos(\omega_{rf1} - \omega_{rf1})t + \cos(\omega_{rf1} -$$

Photodiode's Output $PD_{out} = R \eta |E_{out2}(t)|^2$

Harmonics after the Photodetection

$$PD_{out} = R \eta |E_{out2}(t)|^2$$

 $2\omega_{rf1} - 2\omega_{rfc}$ $\omega_{rf1} - 2\omega_{rfc}$

Shifted Optical Carrier: $2\omega_{rfc}$ Fundamental Frequency: $\omega_{rf1} + 2\omega_{rfc}$ Second Harmonic: $2\omega_{rf1} + 2\omega_{rfc}$ Third Harmonic: $3\omega_{rf1} + 2\omega_{rfc}$

2nd and 3rd Order Harmonic Distortions due to Nonlinearities in MZMs

Distortion order	Distortion frequency	Noise/signal approximation
Two, HD2	$\boldsymbol{\omega} = 2 \omega_{rf1} + 2 \omega_{rfc}$	$\left \frac{[-J_0(a\pi) J_2(a\pi)]}{\sqrt{2} [J_3(a\pi) J_2(a\pi) - J_0(a\pi) J_1(a\pi)]} \right $
Three, HD3	$\boldsymbol{\omega} = 3 \omega_{rf1} + 2 \omega_{rfc}$	$\frac{\left[J_{0}^{2}(a\pi) \ J_{3}(a\pi) - J_{2}(a\pi) \ J_{1}(a\pi)\right]}{\left[J_{3}(a\pi) \ J_{2}(a\pi) - J_{0}(a\pi) \ J_{1}(a\pi)\right]}$

Fundamental Frequency: $\omega r f_1 + 2 \omega_{rfc}$

HD2: $2\omega_{rf1}$ +2 ω_{rfc} HD3: $3 \omega_{rf1}$ +2 ω_{rfc}

Second and Third order harmonic distortions due to fiber dispersion

 $\beta_{\omega} \approx \beta_0 + \beta_1(\omega - \omega_0) + 0.5\beta_2(\omega - \omega_0)^2$

$$\beta_1 = \frac{d\beta_\omega}{d_\omega} = \frac{1}{v_g}$$

$$\beta_2 = \frac{d^2 \beta_\omega}{d\omega^2} = \frac{-D\lambda^2}{2\pi c}$$

The propagation constant for each optical subcarrier is different

Source: W.H. Chen, et al, J. LWT, Vol. 22, No. 7, July 2004

Second and Third order harmonic distortions due to fiber dispersion

Distortion order	Distortion frequency	Noise/signal approximation
Two, HD2	$\omega = 2 \omega_{rf1} + 2 \omega_{rfc}$	$\left \frac{D_3 + D_4}{D_1 + D_2}\right $
Three, HD3	$\omega = 3 \omega_{rf1} + 2 \omega_{rfc}$	$\left \frac{D_5 + D_6}{D_1 + D_2}\right $

$$D_{1} = -J_{0}(a\pi) J_{1}^{3}(a\pi) \cos(B_{2}(-\frac{\omega_{rf1}^{2}}{2} - \omega_{rf1} \omega_{rfc}) L)$$

$$D_{2} = J_{0}(a\pi) J_{1}^{3}(a\pi) \sin(B_{2}(-\frac{\omega_{rf1}^{2}}{2} - \omega_{rf1} \omega_{rfc}) L)$$

$$D_{3} = -\frac{1}{\sqrt{2}} J_{0}(a\pi) J_{1}^{2}(a\pi) J_{2}(a\pi) \cos(B_{2}(2\omega_{rf1}^{2} + 2\omega_{rf1} \omega_{rfc}) L)$$

$$D_{4} = \frac{1}{\sqrt{2}} J_{0}(a\pi) J_{1}^{2}(a\pi) J_{2}(a\pi) \sin(B_{2}(2\omega_{rf1}^{2} + 2\omega_{rf1} \omega_{rfc}) L)$$

$$D_{5} = J_{1}^{3}(a\pi) J_{2}(a\pi) \cos(B_{2}(\frac{3\omega_{rf1}^{2}}{2} + \omega_{rf1} \omega_{rfc}) L)$$

$$D_{6} = -J_{1}^{3}(a\pi) J_{2}(a\pi) \sin(B_{2}(\frac{3\omega_{rf1}^{2}}{2} + \omega_{rf1} \omega_{rfc}) L)$$
(Center for Excellence in Engineering Education

Second and Third Harmonic Distortion due to Fiber Chromatic Dispersion

Harmonic Distortions with and without Fiber Dispersion

SER for the 4-QAM vs. SNR

L=80km; D=17 ps/(nm.km); Attn: 0.2dB/km; RF=62 GHz, Bit Rate=1 Gb/s

U

Received Eye Diagrams and Signal Constellations

a=0.04

a=0.26

a=0.45

a=0.02

Generation of Multi Single Side-Band Sub Carriers

Conclusion

- RF multiplexed OSSB mm-wave signals generated using cascaded MZMs
- Harmonic distortions caused by the MZM and chromatic dispersion are discussed
- In order to optimize the suggested system performance, it is required to adjust the RF amplitude properly.
- A compromise between high SNR and low nonlinearity effects should be considered to guarantee the system performance.

THANK YOU

Questions?

