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Introduction
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Entirety of all genes under the given studies 

i.e., DNA sequence of an organism

Entirety of all metabolism products 

and intermediates in a cell or tissue

Entirety of all genes that are converted 

into transcripts i.e.,mRNA molecules 

Entirety of all proteins found in a 

given cell or tissue
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Research Concept
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Bioengineering (Problem-based Research)

Bioinformatics (Top-down): Parameter values 

are estimated to reproduce biological behaviors

Systems Biology (Bottom-up): Mechanistic 

model construction based on molecular architecture

Seeds

Needs from 

Medical school,

Hospitals, and 

Companies

Genome

Omics

Molecular Biology

Medical data

Computer-aided

drug design/development; 

disease diagnosis, 

prevention, and treatment; 

and patient care/welfare
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We want to understand the system, we want to repair when some parts are failing;

we want to improve the performance more.

 For example in human body, How genes and proteins that are working in the

organism has been accumulated, such that to understand as a system of complex

biological reaction is the systems biology.

Compare two systems
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Background Metabolism is an important 

biological processes

These are complex and 
highly interconnected

Figure 1:Metabolic pathway MAP

Metabolic disorder is related 
to a disease

・Obesity
・Diabetes
・high blood pressure
・Cancer …etc

Metabolic disease
It is important to understand properly of

the metabolic networks using EM. 
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 Biochemical pathways are the organizational units of metabolism.

Metabolism is the total of all chemical reactions carried out by an 
organism.

 A metabolic pathway has many steps that begin with a specific
molecule and end with a product, each catalyzed by a specific
enzyme.

Enzyme 1 Enzyme 2 Enzyme 3

A B C D

Reaction 1 Reaction 2 Reaction 3

Starting

molecule

Product

Metabolic Pathways
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Elementary mode analysis

EM is the minimal set of enzymes that can operate at

steady state, while the set of extreme pathways is the

systemically independent subset of the EMs.

The EM coefficients (EMCs) indicate the quantitative

contribution of their associated EMs and can be estimated

by the maximizing the general objective function.

Network-based metabolic pathway analysis:

Elementary mode (EM) analysis

Extreme pathways (ExP) analysis
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 Ordinary EM analysis is that the number of EMs

suffers from a combinatorial explosion.

 EMs can be described by many scalar products of

each EM, the predicted fluxes must be

independent of them.

Many organisms still do not provide any specific

objective biological function.

Problems
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Objectives

To overcome the existing problems, we proposed a

several times faster and efficient EM algorithm

named the complementary EMs (cEM) analysis.

EM decomposition [1] which generates the major

EMs.

Alpha-spectrum [2] can be computed even when

the flux is partially unknown.

MEP [3] to optimize the EMCs
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Genetically modified mutant cEM analysis

Prediction of flux

distribution
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MATLAB

The white and grey 
square boxes are 
the data and ovals 
are the algorithms.

A flow chart of the cEM analysis 

Flux distribution

cEMs

Predicted flux

1. α-spectrum

2. EM_decomp

3. MEP
Uptake flux, 

numuptake, 

measured flux

S, ub, lb

S, #r, #m
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Alpha spectrum method [2]

Alpha spectrum method is applied to optimize the 
flux distribution. It is defined by:

Input: Stoichiometric matrix, ub, lb

Output: Vmax, Vmin
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EM decomposition method [1]

Input: Flux distribution, S, #reaction, #metabolites

Output: EMs

EM decomposition method is applied to generate the 
major EMs responsible for flux distribution.

Mixed integer linear programming (MILP)

It is an iterative method.
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Methods Objective Function Advantage/Disadvantage

LP
Max biomass or ATP production are can vary
between different organisms and physiological
conditions. Thus the objective function are not
good choice.

QP
Suitable when objective function cannot be
defined in biological terms. Restricted for small
or medium scale and depends on scalar
product of EM.

ECFLP ECFLP is not theoretical but empirical.

MEP
Straight forward formula and theoretically 
sound background. No need additional 
biological hypothesis or objective function and 
not depends on scalar product of EM

did

ne

i

i

ne

i

i

i

ne

i

i

vx 











,

11

1

;1   s.t.

lnmax





i

ne

i

ibiomassbiomass pv .max
1

,







ne

i

i

1

2min 

),...,2,1(/ neiMinMax i 

Different  objective functions

17



X1

X2

X3

100

60

70

20

40
30

v1

v2

v3

v4

v5

v6

v7

30

Example model

1 1 1 0 0 0 0

0 1 0 1 1 0 1

0 0 1 1 0 1 1

S

  
 

   
   

Elementary mode analysis

??????

Reaction V= (v1,v2,v3,v4,v5,v6,v7)

Metabolites  = X1, X2, X3

At steady-state mass balance equation as 

S·V=0

Solve V:

Maximize or minimize  Vi ,  (Vi >= 0, i=2…7)   

v1=100; subject to S·V=0

12 sets of flux distributions will be solved.
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EMC (λ)
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Quantitative contributions =λi·P(numuptake, i); where, i=number of 

EM and numuptake =the row in EM matrix P for uptake / input flux.

The 4 cEM and flux distributions by cEM analysis are as follows: 
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Application in large-scale metabolic model

Model-I

The model-I was involved 140 metabolites and 156

reactions for the E. coli pta-pfkA gene knockout

mutant undergoing adaptive evolution of 30 and 60

days under anaerobic condition.

Model-II

The model-II was involved 140 metabolites and 157

reactions for the E. coli pta-adhE-pfkA-glk gene

knockout mutant undergoing adaptive evolution of

30 and 60 days under anaerobic condition. 20



Metabolic network map for E. coli
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Quantitative contributions =λi·P(numuptake, i) ………………(*)

where, i=number of EM and numuptake =the row in EM matrix P for 

uptake / input flux.

Model Methods EM matrix (P) EMC(λ)

Model-I

Ordinary EM 156×122126 122126×1

cEM 156×202 202×1

Model-II

Ordinary EM 157×321416 321416×1

cEM 157×295 295×1

Quantitative contributions for input flux
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Necessary and sufficient cEM

 
u 2

t,cEM t,ordinary EM
t 1

t,cEM t ordinary EM

1
Predection difference v

where v  and v ,  are the predicted fluxes for the th reaction by the cEM 

and ordinary EM analyses, respectively; u is the number of t
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u
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he unmeasured fluxes.

Model-I Model-II
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cEM & EM= 4

Contribution for 

cEM =61.9%

Contribution for 

ordinary EM=56.5%

EM=122122

Contribution=43.5%

cEM  = 25

Contribution=38.1%

cEM & EM= 12

Contribution for 

cEM =67.2%

Contribution for 

ordinary EM=48.1%

EM= 321404

Contribution=50.2%

cEM= 23

Contribution=31.3%

Model-I Model-IIA B

The employed cEMs and EMs and their quantitative contributions to input flux
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Compare Results (Cont.)

Ordinary EM=122126

& cEM =29 

Total Flux=156

Known flux=26

Unknown flux=130

Total Flux=157

Known flux=26

Unknown flux=131

Ordinary EM=321416

& cEM=35

Model-I Model-II
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GMF is an EM-based algorithm that couples with

modified control effective flux (mCEF) and enzyme

control flux (ECF).

 mCEF was proposed based on CEF to estimate the gene

expression patterns in genetically modified mutants in

terms of specific biological function.

ECF predicts how change in enzyme profile affects the 

flux distribution. 

Genetic Modification of Flux (GMF) [4]
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Compare Results (Cont.)

Model-I Model-II

Ordinary EM=122126

& cEM =29

Total Flux=156

Known flux=26

Unknown flux=130

Total Flux=157

Known flux=26

Unknown flux=131

Ordinary EM=321416

& cEM=35
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Model Condition Method Pearson's 

Correlation (r)

Coefficients of 

determination (R2) 

Model-I

Wild type

Ordinary EM 0.9980 0.9960

cEM 0.9982 0.9964

Mutant type

Ordinary EM 0.9973 0.9947

cEM 0.9975 0.9950

Model-II

Wild type

Ordinary EM 0.9639 0.9291

cEM 0.9634 0.9281

Mutant type

Ordinary EM 0.9989 0.9978

cEM 0.9989 0.9978

Pearson’s correlation coefficient (r) and coefficients of determination 

(R2) between the experimental flux and predicted flux.

r range between 0.9634 and 0.9989, R2 ranging from 0.9281 to 0.9978.

These statistical analyses demonstrate the r and R2 remarkably high,

and provide statistically significant correlation between the

experimental flux and predicted flux by cEM and ordinary EM analyses.

28



Pearson’s correlation coefficient (r) and coefficients of determination 

(R2) between the experimental flux and GMF-predicted flux.

Model Adaptive 

evolution

Method Pearson's 

Correlation (r)

Coefficients of 

determination (R2) 

Model-I

30 days Ordinary EM 0.9696 0.9401

cEM 0.9680 0.9370

60 days Ordinary EM 0.9756 0.9519

cEM 0.9743 0.9492

Model-II

30 days

Ordinary EM 0.8723 0.7610

cEM 0.9873 0.9747

60 days Ordinary EM 0.9908 0.9817

cEM 0.9841 0.9684

r range between 0.8723 and 0.9908, R2 ranging from 0.7610 to 0.9817.

These statistical analyses demonstrate the r and R2 remarkably high,

and provide statistically significant correlation between the

experimental flux and GMF-predicted flux by proposed and ordinary

method. 29



Model Method # EM Total running time(s) Prediction error

Model-I Ordinary 

EM

CNA 122126 600+770.871=1370.871a 0.0233

efmtool 122126 100+780.871=980.871a 0.0233

cEM 202 10+34+1.561=45.561b 0.0268

Model-II Ordinary 

EM

CNA 321416 6000+1050.56=7050.56a 0.0813

efmtool 321416 200+1000.56=1200.56a 0.0233

cEM 295 12+38+1.805=51.805b 0.0475

Calculation speed and accuracy

a The ordinary EM analysis consists of two steps (EM extraction and flux prediction
by MEP) to predict the flux distributions. b The cEM analysis consists of three steps
(α-spectrum, cEM extraction, and flux prediction by MEP).
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Concluding Remarks

We found 29 and 35 cEMs for model-I and model-II are

enough to estimate the flux distributions, at which the

prediction difference almost converges.

 The predicted (MEP & GMF) flux distribution by cEMs

was very consistent with that by the ordinary EM analyses.

The cEM method, where neither requires the initial

generation of a full set of EMs nor any objective biological

function, which is often computationally demanding,

memory improvements and reduced the cost.
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