Innate immune regulation of T-helper (Th) cell homeostasis in the intestine

Masayuki Fukata, MD, Ph.D.

Research Scientist II

Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center,

> Assistant Professor, Step III UCLA Department of Medicine, David Geffen School of Medicine University of California Los Angeles

Two arms of immunity

Innate	imm	unity
--------	-----	-------

Timing Rapid (hours)

Target Broad

Main cells APCs, PMN, NK, ILCs,

Location Interface (mucosa, skin)

Adaptive immunity

Slow (days)

Specific

T cells, B cells

Internal (lymphoid organs)

Pattern recognition receptors (PRRs) recognize microorganisms

TLR signaling

Innate immune cells in the intestine (mouse colon)

CD4+ cells in the intestine (normal human colon)

CD4

The interplay between innate and adaptive Th cell immunity

Th cell differentiation

Distribution difference in Th cell types

Intestinal commensal bacteria maintain mucosal Th cells especially Th17 type

Germ-free mouse

Mouse colonized with intestinal bacteria

Macpherson et al., Nature Reviews Immunology 2004

Function of Th17 cells

- Anti-fungal (filamentous fungi, candida, aspergillus)
- Anti-bacterial (especially extracellular bacteria)
- Induce chemotaxis (neutrophils, macrophages)
- Cell growth (in some tumor)
- Induce autoimmune diseases (MS, RA, etc)
- Induce cytokines (IL-17A, IL-17F, IL-22, IL-21, GM-CSF, CCL20, TNF)
- Lineage flexibility (plasticity)

MyD88-dependent TLR4 signaling induces IL-23p19 in APCs

Does TRIF-dependent TLR4 signaling induce Th17 cell differentiation?

TRIF-dependent TLR4 signaling likely suppress Th17 cell differentiation

The role of TRIF signaling in the regulation of Th17 cells in the intestine

1 In host defense mechanism

(Y. enterocolitica infection model)

J Exp Med 208: 2705-16, 2011

TRIF-deficient (Trif^{LPS2}) mice generate more Th17 cells and less Th1 cells in response to *Y. enterocolitica* infection (day 9)

TRIF-deficient mice fail to establish effective immunological memory in the intestine

Y. enterocolitica re-infection model

Days post secondary:0

7

21 28

14

WT

Trif^{LPS2}

Absence of TRIF skews memory T cells towards Th17 response (7 days post secondary infection)

Transferring primed Th cells (role of TRIF in T cells or non T cells?)

Primed T cells do not confer protective immunity without TRIF signaling during bacterial infection

5x10⁷ CFU infection after primed T cell transfer

Infect immun 83: 4404-15, 2015

Trif^{LPS2} Mfs had an unique cytokine profile that supports Th17 cell differentiation

Consistent alteration of gene expression in the MLN during Y. enterocolitica infection

TRIF-dependent regulation of Th17 cell response involves type I IFN signaling

The role of TRIF signaling in the regulation of Th17 cells in the intestine

Summary

1 In host defense mechanism (Y. enterocolitica infection model)

- 1. TRIF suppresses Th17 cell generation and balances Th1 and Th17 cell responses against Gram-negative bacteria, *Y. enterocolitica.*
- 2. The maintenance of Th1 and Th17 cell balance also requires TRIF signaling and is involved in host resistance to *Y. enterocolitica*.
- 3. TRIF-dependent suppression of Th17 cell generation may be mediated by type I IFN signaling.

The role of TRIF signaling in the regulation of Th17 cells in the intestine

Pathogenesis of inflammatory bowel disease (IBD) involves host Th cell responses to commensal bacteria

In patients with IBD

- Increased number of Th17 cells have been found in inflammed mucosa.
- Attempts have made blocking IL-17, a signature cytokine of Th17 cells in patients with CD; however, it failed to meet efficacy criteria.
- Animal studies have demonstrated inconsistent results with regard to pathogenic and regulatory phenotypes of Th17 cells in the intestine.
- The existence of IFN-γ(+) and Foxp3(+) Th17 cells in human and animal models of IBD suggests the fluctuant phenotype of Th17 cells in the intestine.
- IFN-γ(+)Th17 cells have been implicated in severity of colitis in human and animal models of IBD.

Trif^{LPS2} mice carry IFN-γ expressing Th17 cells in the intestine during TNBS colitis

Mucosal Immunol 8: 296-306, 2015

IL-27 treatment reduces severity of TNBS colitis in Trif^{LPS2} mice along with suppression of IFN-γ expressing Th17 cells in the lamina propria

Mucosal Immunol 8: 296-306, 2015

Th17 cell plasticity in Crohn's disease

The altered expression of cytokine receptors in IFN- γ (+)Th17 cells

IFN- γ (+)Th17 cells (ex-Th17 cells) are more potent to induce colitis than IFN- γ (-)Th17 cells

The role of TRIF signaling in the regulation of Th17 cells in the intestine

Summary

- (2) In intestinal inflammation (TNBS colitis model)
 - 1. TRIF suppresses Th17 cell generation and plasticity with Th1 cells in response to commensal bacteria (CBA).
 - 2. The suppression of Th17 cell generation and plasticity by TRIF signaling involves IL-27, IFNAR, and STAT1.
 - 3. SNPs of IL-27, IFNAR, and STAT1 were individually associated with human Crohn's disease.
 - 4. IFN- γ (+)Th17 cells have strong inflammatory capacity especially in the ileum.

Summary

Th1 / Th17 imbalance

Impairs host resistance to infection

Exacerbates colitis