

### **Research Interests**

- I. The Role of Catecholamines in Cardiac Lineage Commitment
- II. Electrophysiological and pharmacological characterization of ES and iPS cell-derived cardiomyocytes

<u>Martin Lehmann</u>, PhD. Institute for Neurophysiology University of Cologne lehmannm@uni-koeln.de



- Catecholamines play an essential role in heart function of the adult heart
- Severe developmental effects of Catecholamine Synthesis Gene knockout (TH and DBH) (Kobayashi et al., 1995; Zhou et al., 1995, Thomas et al., 1995)
- Paracrine action of catecholamines at developmental stage <u>before</u> neuronal innervation was suggested
- In Contrast: In vivo Pnmt k.o. (Ebert et al., 2004) did not lead to fetal mortality
- Noradrenaline is most important amongst the catecholamines in respect to cardiac development



### **Intracellular Catecholamine Synthesis**





Reserpine-induced catecholamine depletion, reduced cardiomyocyte differentiation efficiency



d2+d4: 50 μm; d10+d14: 200 μm



Reserpine Reduces Numbers of Beating EBs



Research Interests, Martin Lehmann, PhD.; lehmannm@uni-koeln.de



**Cardiac TroponinT** 

### $\alpha$ Actinin



### Expression of cardiac markers is significantly reduced after catecholamine depletion





Interestingly, catecholamine depletion promotes neuronal lineage commitment



- Catecholamines play a crucial role in cardiac differentiation exhibiting their action in a paracrine fashion
- The critical period for catecholamine action is before day 6
- $\succ \alpha$  and  $\beta$ -adrenergic signaling is critical during cardiac differentiation.

II. Electrophysiological and pharmacological characterization of ES and iPS cell-derived cardiomyocytes





## **Project Aim**

- Drugs can have <u>unexpected cardio-active side effects</u> (e.g. torsade de pointes tachycardia, TdP)

→ Pharmacological Screening Tool to detect possible cardio-active effects <u>before</u> costintensive clinical phase

 $\rightarrow$  MEA-based human ES or iPS cell-derived Cardiomyocyte (rESCM) screen

#### Why Multielectrode Arrays (MEA)?

- > non-invasive extracellular measurement (of field potentials (FPs))
- ➢ long-term recordings
- > allows for recording of 2D excitation and conduction (slices, monolayer)





## Multielectrode Array (MEA)

The MEA as pharmacological screening set up



Analysis software is written by U. Egert, Dept. of Neurobiology and Biophysics, Univ. of Freiburg



## Multielectrode Array (MEA)





## LabView-based Analysis Tool



annm@uni kooln lel





### FP/f Correlations-Physiologic Positive Chronotropic Conditions

### Normalized averaged values



- ightarrow Negative (linear) FP/f correlation upon physiologic positive chronotropic stimulation
- $\rightarrow$  Normalized and averaged value pairs are representative for a population of EBs



### FP/f Correlations-Physiologic Negative Chronotropic Conditions

### FP/f correlation during negative chronotropic stimulation





# FP/f Correlations-QT-prolonging conditions

Hypothetically, **QT-time and repolarization prolonging** drugs should change the FP/f correlation toward **less negative** values, e.g. **E4031** 



lehmannm@uni-koeln.de



II. Electrophysiological and pharmacological characterization of ES and iPS cell-derived cardiomyocytes

### **Conclusions:**

- Drug effects on different EBs/cells is comparable (normalization!!)
- EB-to-EB comparison has to be taken with care (e.g. Long-QT-iPS)
- A pharmacological screen is feasible with MEA irrespective of cell type (ES or iPS)