

Evolution of hake mislabeling niches in commercial markets

M. Muñoz-Colmenero, M. Klett-Mingo, E. Díaz, O. Blanco, J. L. Martínez, E. García-Vázquez

Mislabeling in seafood

- Many fisheries are in declined or overexploited worldwide
- Misidentification of fish species
- At catch or landings → inadvertent overexploitation of some species
- More frequently in species distributed worldwide and when there are economic benefits from the exchange

- Processed products more susceptible

Case of hake trade

• Between 12-13 species depending on the authors

Case of hake trade

- Spain is the main hake market in the world (imports > 700,000 tons/year)
- Not all species are equally preferred by consumers:
 - M. merluccius and M. australis are the most appreciated
 - Pacific species have a difficult marketing in Europe due to their high content of parasites.

Case of hake trade

- Mislabeling has been reported at international level in different studies about hakes (Quinteiro et al., 2011; Pepe et al., 2007; von der Heyden et al., 2010; ...).
- Some cases were suspected to be commercial fraud
- Other cases were considered likely unnoticed in mixed fisheries

Hakes: identification based on DNA

- For unambiguous identification molecular tools based on DNA analysis have proven to be very effective (Dawnay et al., 2007; Kochzius et al., 2010; García-Vázquez et al., 2011; ...)
- Mitochondrial genes as Cyt b or COI show enough interspecific variation to distinguish related species

In our study

- Proportion of wrong labels
- Mislabeling between different products
- Current mislabeling vs. previous studies
- Identify main potential niches of mislabeling
- Make recommendations to reinforce quality controls

Samples analyzed

TOTAL

381

	Frozen		Fresh			
N	Whole piece	Unrecognizable	Whole piece	Unrecognizable		
89	58.43%	41.57%	-	-	García-Vázquez et al., 2011 (5S rDNA & RFLP of Cit b)	
40	7.5%	92.5%	-	-	Machado-Schiaffino et al., 2008 (SNPs Control region)	
18	1	100%	-	-	García-Vázquez et al., 2011 (5S rDNA & RFLP of Cit b)	
234	3.42%	60.68%	30.34%	5.56%	New samples (Muñoz-Colmenero et al., 2015) (COI & Cit b)	
	89 40 18	N Whole piece 89 58.43% 40 7.5% 18 -	N Whole piece Unrecognizable 89 58.43% 41.57% 40 7.5% 92.5% 18 - 100%	N Whole piece Unrecognizable piece Whole piece 89 58.43% 41.57% - 40 7.5% 92.5% - 18 - 100% -	N Whole piece Unrecognizable piece Whole piece Unrecognizable piece 89 58.43% 41.57% - - 40 7.5% 92.5% - - 18 - 100% - -	

-The average selling price of hake products/period (http://www.mercabarna.es/estadistiques/es_index.html)

-Price/Kg in different retail stores and markets of Spain (17 market chains).

Identification and mislabeling

•Identified by comparison with GenBank database (>98%) & Barcode of Life (BOLD)

•8 species from the labels

- -M. merluccius
- -M. senegalensis & M. polli
- -M. capensis & M. paradoxus
- -M. bilinearis
- -M. australis & M. hubbsi

•9 species from the DNA analyses

- -M. merluccius
- -M. polli
- -M. capensis & M. paradoxus
- -M. australis & M. hubbsi
- -Macruronus magellanicus
- -Pangasianodon hypophthalmus
- -Coryphaenoides acrolepis

•14,9% of mislabeling in new samples (2011-2013)

- -38.8% in 2010
- -17.5% in 2007
- -31.5% in 2004-2006

Oscillation of mislabeling

- •Mislabelling oscillates in the hake trade
- •The net outcome resulted in an economic loss for the consumer
- •The diversity of substitute species has increased along these years.

Substitute species

- •Species of genus Merluccius from different oceans
- •Species of the same family but different genus (i.e.: *Macruronus*)
- •Non-hake species (i.e.: Pangasianodon)

Current globalized market with exchanges of food varieties among countries

Mislabeled species

- •However, the species being replaced were similarly distributed between periods
- •Non significant differences

Mislabeling per type of product

		Frozen						
		Whole	e piece	Unrecognizable				
		Possibly at landing	Processing	Possibly at landing	Processing			
	2004-2006	0%	15.4%	32.4%	21.6%			
	2007	0%	0%	10.8%	8.1%			
	2010	-	-	22.2%	16.7%			
	2011-2013	12.5%	0%	7.0%	7.7%			
_				Fresh				
	2011-2013	Whole	e piece	Unrecognizable				
		Possibly at landing	Processing	Possibly at landing	Processing			
		0%	11.3%	0%	38.5%			

- •Significant higher proportion of mislabeling of unrecognizable vs. whole pieces
- Significant higher mislabeling in frozen products
- •Within frozen products for 2011-2013 non-significant differences between whole pieces and processed products

Focus of mislabeling

Fresh samples

- •Majority of the substitutions probably occurs during the distribution chain or processing:
- Exchanges between allopatric species

European hake

South African hake

- Some cases represent an economic loss for the seller, selling the expensive species labeled as the cheaper → May be for undermining the catch limits.

South African hake

European hake

Focus of mislabeling

Frozen samples

Many sympatric substitutions

need of more careful species identification at landing or during fishing.

Other cases delibetared frauds

cheaper allopatric or non-*Merluccius* species are sold as expensive *Merluccius* species

need of more distributed controls along the hake market chain.

Conclusions

- •The mislabeling in hake trade is a current problem.
- •Is necessary reinforce the quality controls along the market chain at different points, based on the species and type of products.
- •Reliable quality controls are important to:
 - prevent fraud
 - guarantee the free-choice for the consumer
 - have correct catch reports for sustainable fisheries management

Acknowledgments

University of Oviedo (Asturias, Spain)

aecosan

agencia española de consumo, seguridad alimentaria y nutrición

Agency for Consumer Affairs, Food Safety and Nutrition (Madrid, Spain)

Grants:

Spanish National Grant AP-2010-5211
Campus of International Excellence of the
University of Oviedo (Spain)
Project FUO-EM-181-11
Research Grant GRUPIN14-093

The Center for Public Integrity (Washington, USA)

