

CHD

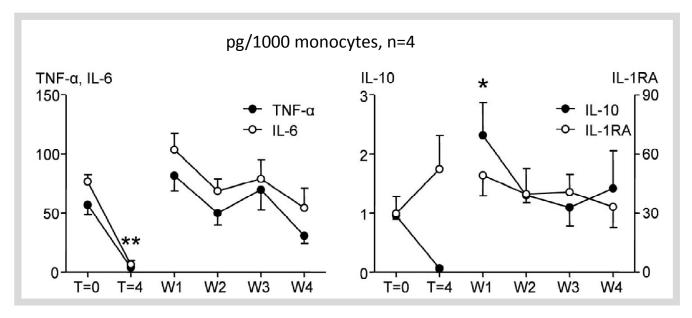
Characterization of inflammation and immune cell modulation induced by lowdose LPS administration to healthy volunteers

M.R. Dillingh¹, E.P. van Poelgeest¹, K.E. Malone², E.M. Kemper³, E.S.G. Stroes³, M. Moerland¹, J. Burggraaf¹

¹Centre for Human Drug Research, Leiden, The Netherlands ²Good Biomarker Sciences, Leiden, The Netherlands ³Amsterdam Medical Center, Amsterdam. The Netherlands

Human endotoxin model – introduction

- A model of systemic inflammation
 - Flu-like symptoms
- Administration of purified LPS (endotoxin) from *E. coli* or other Gramnegative bacteria
- *E. coli*: high reproducibility of effects (Andreasen et al.)
- High LPS doses, not preferred
 - Potential effects of immune-modulating interventions might not be observed
 - Not free of risk for the volunteer (a.o. cardiovascular)
 - Other homeostatic mechanisms may be temporarily impaired


LPS hyporesponsiveness

- Follows upon in vivo LPS challenge
 - Altered cytokine production
 - \downarrow Inflammatory response following LPS rechallenge
- Many negative regulators (e.g. SOCS-1, IRAK-M, and SHIP) of the TLR4 signaling pathway (*Fu et al. 2012, Morris et al. 2011*)

LPS hyporesponsiveness – *Kox et al. 2011*

- T=0: *in vivo* challenge
- T=4hrs and 4 wks: ex vivo challenge
- Ex vivo LPS hyporesponsiveness
 - Resolved 1 week after *in vivo* LPS challenge
 - Exact time course unclear
 - Possible differences between read-outs

CHDR Centre for Human Drug Research

Study objectives

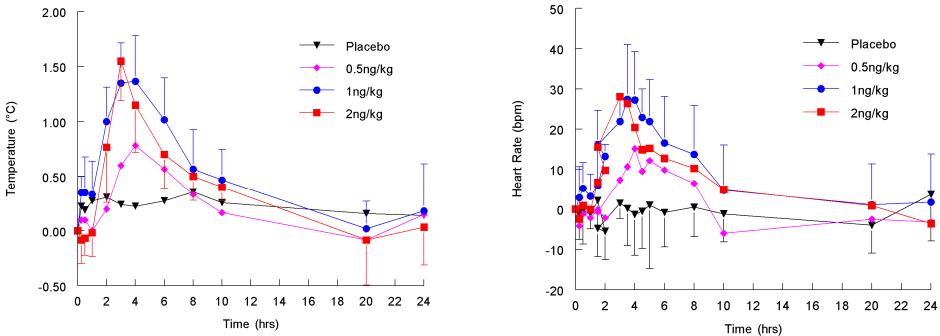
- To assess the relationship between administration of low doses of LPS (0.5, 1 and 2 ng/kg) and the inflammatory response (cytokine levels and CRP) in healthy male volunteers
- To assess the duration of hyporesponsiveness of the immune system after *in vivo* LPS administration, as determined by *ex vivo* LPS challenges

Study outline (1)

- Randomized, blinded, placebo controlled, sequential-group study
- 24 healthy male subjects
 - 3 cohorts (active-pl: 6-2)
- Ascending single iv doses of 0.5-2ng/kg LPS
 - U.S. Reference *E. Coli* endotoxin Lot#3 (O113:H, 10:K negative, ~10IE/ng)
- IV hydration
 - Pre-hydration 2hrs pre-dose: 1500mL glucose/saline
 - Hydration 6hrs post-dose: 150mL/hr

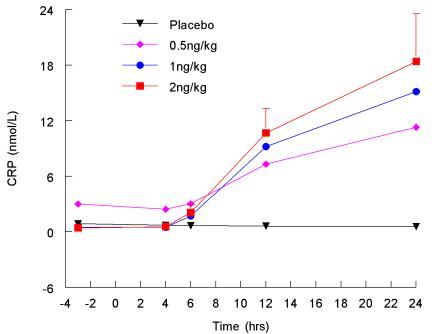
Study outline (2)

- Inflammatory response, in vivo
 - CRP
 - IL-1 β , IL-6, IL-8 and TNF- α (human 4-plex, MSD)
- Inflammatory response, ex vivo
 - Whole blood cultures with LPS (*E. Coli*, O111:B4, ~10IE/ng)
 - 24 hrs incubation at 37° C, 5% CO₂
 - -2hrs, 6, 12, 24, 48 and 72hrs
 - IL-1 β , IL-6, IL-8 and TNF- α (human 4-plex, MSD)
- Safety
 - AEs / vital signs / ECG / routine labs



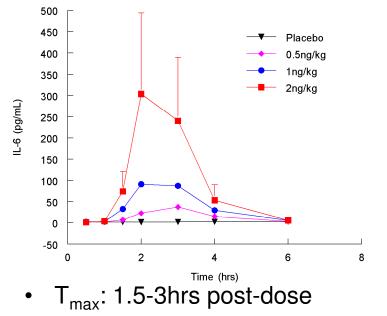
Study results – Safety

- Well tolerated, no clinically relevant changes or unexpected treatmentrelated trends in
 - Urinary or blood laboratory parameters
 - ECG recordings
 - Vital signs
 - AEs: mild severity and self-limiting
- Most frequent reported AEs
 - Headache; 66.7% of the LPS-treated subjects, 33.3% of the placebo-treated subjects
 - Feeling cold; 44.4% of the LPS-treated subjects, none of the placebo-treated subjects


Study results – Safety – Temperature and HR

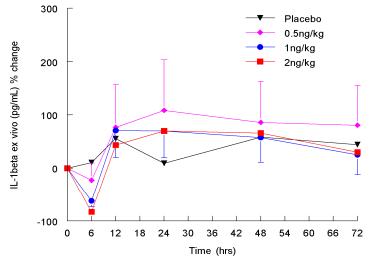
• BP highly variable over time, max. mean decreases in the range of 0 to -13 mmHg

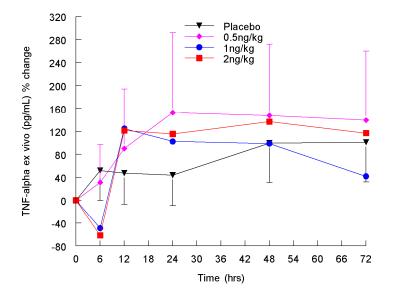
Study results – In vivo CRP



- Statistical analysis
 - Significant contrasts, dose groups (0.5, 1, 2ng/kg) vs pl: p<0.0001

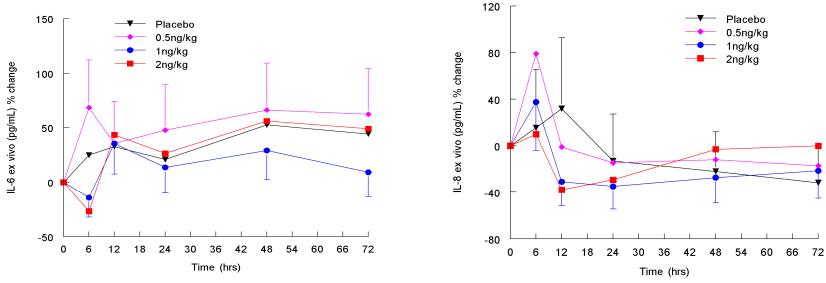
Study results – Circulating cytokines (TNF- α , IL-6, IL-8)





- Statistical analysis
 - Significant contrasts up to t=6hrs: (0.5, 1, 2ng/kg) vs pl: p<0.0001
- IL-1β: ↑ 3-6hrs post-dose (2ng/kg)

Study results – LPS Hyporesponsiveness


• Statistical analysis

	Contrast at 6hrs versus pl	Estimated difference (%)	p-value
IL-1β	1ng/kg	-65.8	<0.0001
	2ng/kg	-84.7	<0.0001
TNF-α	1ng/kg	-66.4	0.0005
	2ng/kg	-74.7	<0.0001

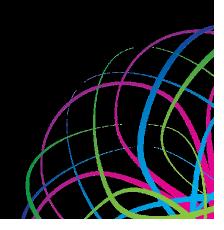
CHDR Centre for Human Drug Research

Study results – LPS Hyporesponsiveness

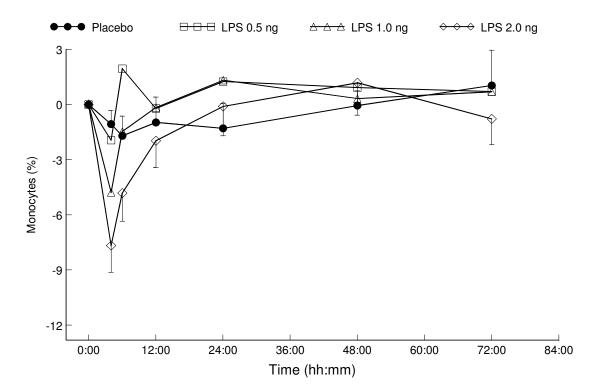
• Statistical analysis

	Contrast at t=6hrs vs pl	Estimated difference (%)	p-value
IL-6	1ng/kg	-31.3	0.0283
	2ng/kg	-41.3	0.0024
IL-8	0.5ng/kg	55.1	0.0879
	1ng/kg	19.2	0.4961
	2ng/kg	-4.8	0.8475

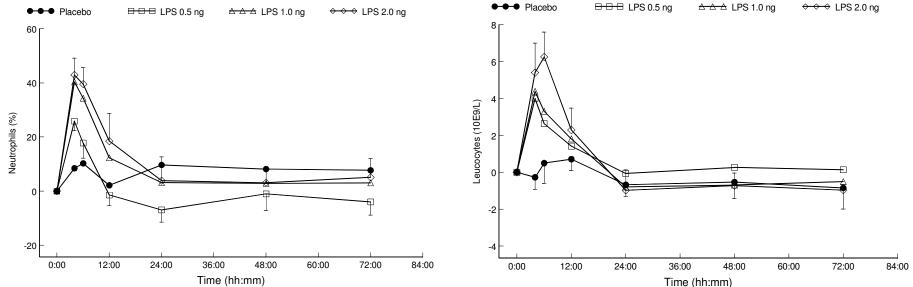
• [IL-8] and [IL-6] response \neq [TNF- α] and [IL-1 β]: indication for priming?


Conclusions

- LPS doses 0.5-2ng/kg: well-tolerated
- PD parameters: cytokine release and safety markers (temperature and heart rate)
- LPS doses ≥ 0.5ng/kg: distinct inflammatory response
- LPS dose-dependent hyporesponsiveness observed for IL-1β, IL-6 and TNF-α after *ex vivo* LPS stimulation:
 - Max. measured 6hrs post-dose
 - Total duration of ~12hrs
- Clinical pharmacology studies: application of a combination of *in vivo* LPS administration and repeated *ex vivo* LPS challenges


CHDR Centre for Human Drug Research

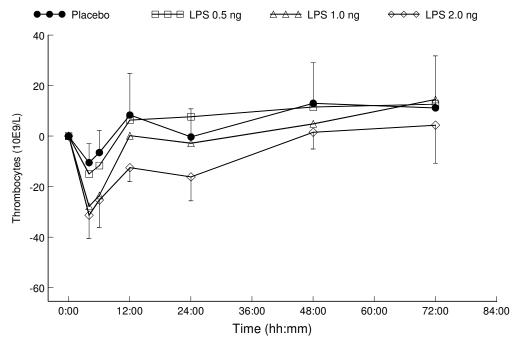
unlocking the true potential


Study results – Safety – Monocytes

• Monocyte count: dose-dependent decrease with a minimum change from baseline at 6hrs post-dose, returning to baseline 12-24hrs post-dose

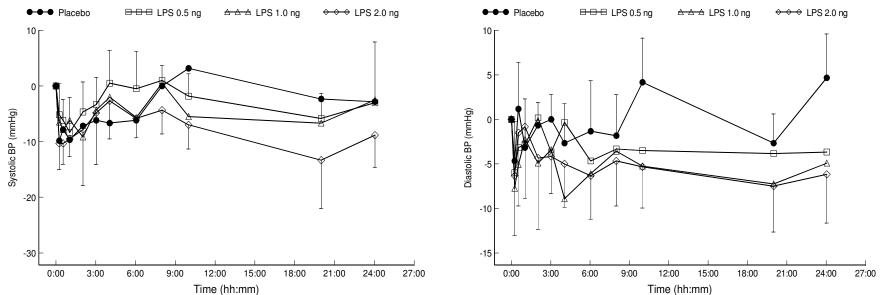
Study results – Safety – Neutrophils / Leucocytes

• Neutrophil count: peak levels at 4hrs post-dose

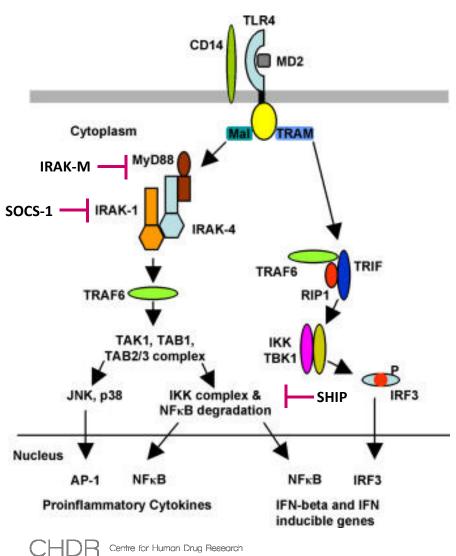

returning to baseline 12-24hrs post-dose

Leucocyte count: peak levels at 4-6hrs post-dose

CHDR Centre for Human Drug Research


Study results – Safety – Thrombocytes

 Blood platelet count (thrombocytes): dose-dependent decrease with min. mean levels ~4hrs post-dose, returning to baseline levels around 12 (0.5 and 1ng/kg) and 48hrs post-dose (2ng/kg)



Study results – Safety – BP

LPS signaling pathways

Human endotoxin model – Priming

- Follows upon in vivo LPS challenge with very low doses
 - ↑ Inflammatory response following LPS rechallenge
 - May enable the immune system to elicit a strong inflammatory response against potential pathogens (*Fu et al.*)
- Priming in animals described extensively, but underlying mechanisms
 poorly understood

Power calculation (TNF- α , IL-6 and CRP)

- Parallel study design, LPS dose level: 0.5 ng/kg, sample size of 8 subjects per treatment group
 - 80% power to detect (two-sided significance level of 0.05)
 - 28% inhibition in the LPS-induced TNF- α response;
 - 53% inhibition in the LPS-induced IL-6 response;
 - 49% inhibition in the LPS-induced CRP response.
- Inter subject variability on log scale is well comparable between different LPS doses - this power calculation also applies for LPS doses of 1 and 2 ng/kg

