

3rd International Conference and Exhibition on Food Processing & Technology 21.07.2014 Las Vegas, USA

FOOD ANALYSIS TO CHECK QUALITY, SAFETY AND AUTHENTICITY BY FULL-AUTOMATED ¹H-NMR

Markus Link, Manfred Spraul, Hartmut Schäfer, Eberhard Humpfer, Monika Mörtter, Fang Fang, Birk Schütz (Bruker BioSpin GmbH, Rheinstetten, Germany)

Peter Rinke, Susanne Koswig (SGF International e.V., Nieder-Olm, Germany)

Christian Kost, Fred Langenwalter (Winespin Analytics, Aspisheim, Germany)

Overview

- What can Nuclear Magnetic Resonance (NMR) accomplish in food analysis
- NMR-based screening features
- The JuiceScreener Concept as template
 Targeted analysis (quantification)
 Non-targeted analysis (statistics)
- The WineScreener solution
- NMR in analysis of other food (e.g. edible oil, honey, ...)

What can NMR accomplish in Food Analysis?

Non-Targeted Screening / Targeted Screening in a single measurement

- Conventional food tests are Targeted!
- What is not tested for, will likely be over-looked!

The Non Targeted Screening (NTS) enables the discovery and analysis of unexpected and unknown (!!) deviations, which can not detected with conventional analytical methods! Over and above that concentration differences of known substances

could be detected.

NMR-based Screening Features

Highest reproducibility / transferability

Full automated models need to be applicable to data generated :

- By someone else
- At an other spectroscope
- In another lab
- Anywhere in the world
- At any time

Need of common standard and protocols in order to secure models and their applicability

Juice Quality Control by JuiceScreener / SGF-Profiling™

Fruit Juice Analysis

- Full automated push-button system
- Only one measurement (~ 15 minutes)
- Minimal sample preparation
- Targeted analysis
 - Quantification of more than 30 compounds
- Non-Targeted analysis (up to 10 results)
 - Authenticity
 - Frauds
 - Fruit content
 - Quality
- Database of more than 16.000 juice spectra
- PDF report of all results
- Even retrospective analysis is possible

Greentech Asia Shanghai 2010: Award for most innovative Food Analysis System!

INDUSTRIE

PREIS 2008

German Industry Award 2008 Category: Automation

Conclusions made by Quantification

- Sugar Profile (Sucrose, Glucose, Fructose) => Addition of sugar
- Acids Profile => Addition of acid (e.g.: Citric acid in apple juice)
- Ratio Malic Acid/Quinic Acid => Ripeness of the apple
- Ratio Citric acid/Iso-citric Acid in Lemon Juice => Addition of citric acid
- Concentration of Galacturonic Acid => Enzymatic treatment in apple juice
- Concentration of Phlorin in Citrus Fruit => Usage of peels
- Concentration of spoilage parameters => Lactic Acid, Fumaric Acid, Formic Acid, Gluconic Acid
- Detection of Other Fruits => For example, pear in apple juice, citrus fruit in apple juice, grapefruit in orange juice

Example: Fruit content

Fruit content of Red-Fruits Purees

• Adulteration :

Dilution by addition of sugar

Compensation by : Addition of minerals and

of 1 or several amino acids

to adjust the sugar/formol ratio

Fruit Content of Red-Fruits Purees

⇒ The fruit content is lower in the tested sample

Fruit Content of Red-Fruits Purees

Results of Conventional Analyses

Conventional parameter (Calculated at Brix 8.5°)

Potassium	2161 ppm √
Phosphate	636 ppm √
Magnesium	135 ppm 认
Isocitric acid	106 ppm 认
Formol number	18.9 ml/100ml 🗸
Citric/isocitric ratio	151 🗸

Glucose/Fructose ratio

Fruit Content Estimation

105 % 🗸

The results of the conventional analyses have estimated the fruit content of the sample as '*normal*' **but**...

0.82 🗸

Fruit Content of Red-Fruits Purees

Results of Isotopical Analyses

Conventional parameter (Calculated at Brix 8.5°)

Potassium Phosphate	2161 636	ppm √ ppm √	Fruit Content	Estimation
Magnesium Isocitric acid Formol number	135 106 18.9	ppm √ ppm √ ml/100ml	105 % N	⁄6 √
Citric/isocitric ratio Glucose/Fructose	151 ratio 0.82	$\sqrt[n]{\sqrt{1}}$	_	Share of added sugar: 20% at least
isotopic prome			Difference	Difference
δ13C- Sugar δ13C- Acids δ13C- Pulp	-24.7 ‰ V-PD -24.9 ‰ V-PD -23.9 ‰ V-PD	B √	→ -0.2 ‰ V-PDB √	FAIL ! -0.85 ‰ V-PDB

The next step in NMR based Food Quality Control has arrived From JuiceScreener to WineScreener

Winespin-Anal

Bruker BioSpin GmbH

Analysis Report Wine-Profiling[™]

Sample ID: Bruker_3Oberkircher_2011

Riesling

 Measuring Date:
 20-Mar-2012 16:42:27

 Reporting Date:
 21-Mar-2012 09:32:04, Version: 1.0.0

Additional Information

Variety:

Results Summary

Type of Analysis	Analysis ID	Result	Status
Targeted Analysis			
Quantification	Q	-	
Untargeted Verification Analysis			
Univariate Verification	1000/75	In-Model	
Multivariate Verification	1000/75	In-Model	

Please note, that Wine-Profiling TM is a screening method with extensive inhouse validation, but it is not an method. Quantitation is regularly validated taking part in official ring tests.

Wine Analysis by WineScreener[™]

Wine by NMR:

- Identification & quantification of compounds
- Determination of grape variety
- Geographical origin for selected countries
- Company product profile / identity comparison
- Detection of irregularities of any kind
- Vinification / Aging

Very simple sample preparation

- can be done manually or by robotic system

pH control by automated pH-titration system

Total sample volume typically 600 μ l

¹H-NMR spectrum of wine (without suppression)

¹H-NMR spectrum of wine (with suppression)

Additional compounds: HMF, trigonelline, sucrose, fructose, citric acid, fumaric acid, proline, ...

Bruker **BioSpin**

Targeted Analysis

In the following tables the results of the quantitative analysis are given. Parameters labelled with * are calculated parameters.

Standard Parameters:

formic acid fumaric acid

gluconic acid

putrescine

cadaverine HMF

furfural

Compound

1,3-propanediol

2.3-butanediol

2-methyl-propanol

2-phenylethanol

acetaldehyde

pyruvic acid

succinic acid

3-methyl-butanol

galacturonic acid

glycerol/ethanol*

methanol

Higher Alcohols

Compound total alcoho total alcoho ethanol ethanol-v* glycerol glucose fructose glucose/fru sucrose arabinose total sugar total ferme tartaric acid malic acid lactic acid citric acid energy valu bread units carbohydrat

Degradation Par	Amino Acids:							
					Offi	cial Re	ference	Wine-Profiling [™]
Compound	Compound	Value	Unit	LOQ	Flag	min	max	NMR Reference Database
acetic acid	4-aminobutanoic acid	<120	mg/L	120	0	-	-	not available
ethylacetate	alanine	<35	mg/L	35	0	-	-	not available
ethyllactate	arginine	<150	mg/L	150	0	-	-	not available
formic acid	proline	222	mg/L	150	0	-	-	not available

(Poly-)phenols:

				Official Reference			Wine-Profiling [™]
Compound	Value	Unit	LOQ	Flag	min	max	NMR Reference Database
caftaric acid	20	mg/L	15	0	-	-	not available
epicatechin	<30	mg/L	30	0	-	-	not available
gallic acid	<25	mg/L	25	0	-	-	not available
shikimic acid	22	mg/L	20	0	-	-	not available
trigonelline	13	mg/L	10	0	-	-	not available

Stabilising Agents:

				Official Reference			Wine-Profiling [™]
Compound	Value	Unit	LOQ	Flag	min	max	NMR Reference Database
benzoic acid	<10	mg/L	10		-	0 c)	not available
sorbic acid	<10	mg/L	10		-	200 ^{c)}	not available
salicylic acid	<30	mg/L	30	\bigcirc	-	-	not available

Sources for Reference Values

a) EU-Verordnung

b) Resolution OENO 19/2004

c) Weinverordnung (Germany, 21. April 2009)

Quantification

Statistical Modelling with authentic wine

- In cooperation with several wine laboratories more than 10.000 wine samples have been collected and measured at 400 MHz
- NMR, once trained, can predict parameters, that are not related to a special molecule
- NMR can deliver statistical results beyond quantification.

Differentiation of grape varieties Classification & verification models

Model	Group by	Groups
German/Austria white wine	Varieties	Riesling Weiss, Müller Thurgau, Pinot Blanc/Gris, Welschriesling, Grüner Silvaner, Sauvignon Blanc, Chardonnay Blanc, Grüner Veltliner
German/Austria red wine	Varieties	Dornfelder, Pinot Noir, Blauer Portugieser, Blaue Zweigeltrebe

Differentiation of grape varieties Classification & verification models

Model	Group by	Groups
World Wide Red Wine	Varieties	Cabernet Sauvignon, Merlot Noir, Syrah, Tempranillo
World Wide White Wine	Varieties	Chardonnay Blanc, Riesling Weiss, Sauvignon Blanc

Red wine world wide: Determination of Tempranillo Quantification and concentration profiles

Classification Analysis

Model: Red Wine Variety

Result: Most probable class is Tempranillo

Targeted Analysis

In the following tables the results of the quantitative analysis are given. Parameters labelled with * are calculated parameters.

Standard Parameters:

				Official Reference		W	Wine-Profiling [™]		
Compound	Value	Unit	LOQ	Flag	min	max	NMR	Reference Dat	abase
total alcohol*	116.5	g/L	-	0	-	-	98.3		127.6
total alcohol-v*	14.8	%vol	-	0	-	-	12.5		16.2
ethanol	116.1	g/L	5.0	0	-	-	98.0		127.0
ethanol-v*	14.7	%vol	-	0	-	-	12.4		16.1
glycerol	9.7	g/L	0.5	0	-	-	4.4		10.6
glucose	<0.5	g/L	0.5	0	-	-	<0.5		4.4
fructose	<0.5	g/L	0.5	0	-	-	<0.5		4.8
glucose/fructose*	-	-	-	0	-	-		not available	
sucrose	<0.2	g/L	0.2	0	-	-	<2	00 mg/L In reference	set
arabinose	448	mg/L	100	0	-	-	<100		510
total sugar (bef. inv.)*	<1.0	g/L	1.0	0	-	-	<1.0		9.2
total fermentable sugar*	<1.0	g/L	1.0	Ο	-	-	<1.0		9.2
tartaric acid	2.1	g/L	0.5	0	-	-	1.3		2.8
malic acid	<0.2	g/L	0.2	0	-	-	<0.2	L	0.3
lactic acid	1.5	g/L	0.2	Ο	-	-	0.9		3.4
citric acid	<200	mg/L	200		-	1000 ^{a)}	<200	L	218
energy value*	3650	kJ/L	-	0	-	-	3080		3970
bread units*	<0.2	1/L	0.2	0	-	-	<0.2	L	0.8
carbohydrate units*	<0.2	1/L	0.2	0	-	-	<0.2		0.9

Differentiation of geographical origin Classification & verification models

Model	Group by	Groups
German/Austria Area for Riesling	Area	Germany, Austria
German Area for Riesling	Region	Rheinhessen, Württemberg, Pfalz, Mosel, Baden, Rheingau

Differentiation of vintage Classification & verification models

Model	Group by	Groups
German Riesling vintage	Year	2011, 2012

Vinification: Barrique vs. Chips under development

Or?

Space of Discrimination

• n (Barrique)= 50, n(with chips) = 14

• outlier: Wuerzburg-Wine-118-A13

Confusion Matrix (avg. = 95.8%)

Original Groups

Cooperation LUA Würzburg

Proof-of-Principle

Same methodology for other areas of mixture analysis

- Food
 - Edible oil
 - Honey
 - Coffee
 - Milk powder
 - Soft-Drinks and Energy-Drinks
 - Cheese

Edible Oil (Under development)

BRUKER

Olive / Palm / Rape seed / Soya bean / ...

• Preparation in CDCl₃

Olive Oil: Comparison in Aromatic and Olefinic Region

The NMR lipid profile of edible oils

¹H signal assignments

under development first results

Geographical origin of olive oils

Italy versus Greek Islands

under development first results

Palm oil Certification of sustainable production

2004 Foundation of the Roundtable for Sustainable Palm Oil (RSPO), representing ~50% of global palm oil production, and members of major traders and processing industries

RSPO certifications (sustainable production, supply chains)

- palm oil producers/suppliers have fundamental interest in methods confirming oil quality and certification compliance
- NMR screening methodology may have the power to narrow palm oil production sites down to single plantations, proving that respective palm oil charges originate only from existing - and not from newly deforested - areas.

Conclusions

FoodScreener systems -> a powerful analytical tool

- Minimal sample preparation
- ¹H-NMR delivers highest reproducibility and transferibility (lab, user and instrument independent !)
 - ¹H-NMR combines targeted and nontargeted analysis within one single measurement (Detection of even unknown deviations !)

Enables a positive identification and quantification of a multitude of compounds

Conclusions

FoodScreener systems → a powerful analytical tool

- Non-disruptive technique
- ¹H-NMR is fully quantitative (one calibration suffice for all compounds)
- Rapid and full automated push-button solution to analyze fruit juice and wine, inclusive automated PDF report of all results (next WineScreener release: Q4, 2014)
- Full automated edible oil and honey screening will be available probably end of 2014

Acknowledgements

University of Athens (Greece)

Emmanuel Mikros Alexios-Leandros Skaltsounis

University of Ioannina (Greece)

Michael G. Kontominas

University of Bari (Italy)

Francesco Longobardi Antonio Sacco Andrea Ventrella

Malaysian Palm Oil Board

Bruker BioSpin GmbH (Rheinstetten, Germany)

Andrea Steck, Claire Cannet, David Krinks, Fang Fang, Léa Heintz, Eberhard Humpfer, Monika Mörtter, Hartmut Schäfer, Birk Schütz, Manfred Spraul

Bruker BioSpin S.I.r. (Milano, Italy)

Claudia Napoli

May 12, 2013

DLR Neustadt Rheinland Pfalz: - Arbeitsgruppe Herr Prof. Dr. Fischer

Universität Koblenz-Landau -Frau Bansbach

CVUA Karlsruhe:

- Arbeitsgruppe Herr Dr. Godelmann

SGF Niederolm: - Herr Dr. Rinke, Frau Dr. Koswig

LGL Würzburg: - Arbeitsgruppe Herr Dr. Wachter, Herr Dr. Christoph

Winespin-Analytics:

- Herr Kost, Herr Langenwalter, Herr Witowski

Contact data and homepage

Your contact regarding FoodScreener[™] questions (juice, wine, edible oil, honey, etc.):

Dr. Markus Link

+49 172 639 69 40;

markus.link@bruker-biospin.de

You can also get in contact with us using the internet:

• <u>www.bruker.com/sgf</u>

Thank you for your attention