8th International Conference and Exhibition

on Pharmaceutics & Novel Drug Delivery Systems

Paromomycin liposomes – an Alternative Strategy for

treatment of Infectious Diseases

Maria Manuela Gaspar

Research Institute for Medicines (iMed.ULisboa), Faculty Pharmacy, Universidade de Lisboa, Portugal

Madrid, 7th March 2016

Leading Causes of Death Worldwide

Nearly 15 million (>25%) of the total deaths worldwide (57,029,000) are caused by infectious and parasitic diseases

World Health Organization. The world health report 2004-changing history. Geneva: The Organization; 2004

Visceral Leishmaniasis - Epidemiology

An infectious disease prevalent in Asia, East Africa, South America, and the Mediterranean region.

- Affects 350 million people in 98 countries around the world (Bangladesh, Brazil, India, Ethiopia, Kenya, Nepal, and Sudan represent over 90% of new cases)
- 200,000 400,000 new cases of visceral leishmaniasis each year
- VL responsible for 48 000 deaths annually (2012)
- Leishmania-HIV co-infection growing problem in Southern Europe, Brazil and Africa

Endemic status of VL worldwide, World Health Organization, October 2012

Current Treatments against Visceral Leishmaniasis

Pentavalent antimonials (Stb and meglumine antimoniate) (i.m. /i.v.) – firstline therapy for VL since 1940. Prolonged treatment, toxicity, low patient compliance, less effective, drug resistances constitute major concerns

Pentamidine (i.m. /i.v.) - abandoned as first line-treatment, due to high toxic effects, high cost, development of resistances;

Miltefosine (oral) – gastrointestinal problems, nephrotoxic, hepatotoxic,

teratogenic, prolonged treatment, low patient compliance, expensive;

Amphotericin-B / Amphotericin-B deoxycholate (i.v.) - effective,

toxicity, nephrotoxicity (monitorization of patients);

Liposomal Amphotericin-B (Ambisome) (i.v.) – minor nephrotoxicity, the highest effective of all VL drugs, very expensive;

Paromomycin (i.m.) - cheapest VL treatment, painful, hepatotoxicity,

nephrotoxicity may occur. In 2006 Indian government approved its use against VL.

new strategies / new drugs for the treatment of parasitic diseases are

needed

Therapies against Visceral Leishmaniasis

Ambisome (liposomal amphotericin-B)

Amphotericin- B

Paromomycin intramuscular injection

http://www.path.org/annual-report/2012/

Highly effective, reduced toxicity, nephrotoxicity,

OUR STRATEGY

Improve the therapeutic performance of PRM

Requirements for a sucessful liposomal formulation

Stability in lyophilized form

Cellular association studies of liposomes (THP-1 cells)

Fluorescence microscopy revealing internalization of labeled liposomes (Rho) in THP-1 cells, nucleus of THP1-cells (DAPI) and the conjugation of both labels

Intracellular activity in macrophages

IC ₅₀ (μΜ)	
Free PRM	100
Lip PRM	2.5

Biodistribution profile PRM Free vs LIP

Lip PRM - lipid composition DPPC:DPPG Mean size: 0.11 μm

Therapeutic effect of PRM formulations

Murine mycobacterial avium model of infection,

PRM liposomes vs Free PRM

Male BALB/c mice

M. avium 2447: i.v. Infection (2x10⁵ CFU/ mouse)

Infected organs (spleen, liver, lung)

Tissue homogenization

CFU countings

Therapeutic Effect of PRM formulations on growth index

Growth index – difference between the \log_{10} CFU at the end of treatment and the \log_{10} CFU at the beginning of treatment

Experimental conditions:

Control (infected and untreated mice) Free PRM Lip 1 - DMPC:DMPG:DSPE-PEG Lip 2 - DPPC:DPPG:DSPE-PEG Lip 3 - DPPC:DPPG Treatment dose: 12 mg/kg body weight (i.v.) 3 times a week for 3 weeks (2 weeks after infection induction)

Therapeutic effect of PRM formulations

Parasite burden of Balb/c mice infected with L. Infantum

Therapeutic effect of PRM liposomes early vs delayed treatment

Murine visceral leishmaniasis model of infection

Parasite burden of Balb/c mice infected with *L. infantum* (MHOM/MA/67/ITMAP-263)

Experimental Conditions

Infection – 1x10⁶ promastigotes (i.v.) **Early treatment** - 1 week after infection **Delayed treatment** – 83 days after infection Treatment Schedule - daily injections for 5 days Negative Control – infected non-treated

PRM Free – Free PPRM / Dose:15 mg/kg (i.v.)

PRM Lip - LIP PRM (DPPC:DPPG) Mean size: 0.14 µm / Dose:15 mg/kg (i.v.)

Therapeutic effect of PRM liposomes vs Ambisome

Parasite burden reduction of Balb/c mice infected with *L. infantum* (MHOM/MA/67/ITMAP-263)

Treatment Schedule – daily injections for 5 days

Conclusions

- PRM was efficiently encapsulated in liposomes, PRM formulations showed high stability in suspension, in the lyophilized form liposomes were able to retain more than 90% of encapsulated antibiotic;
- The encapsulation of PRM in liposomes resulted in higher half-life in bloodstream and higher accumulation in liver, spleen in comparison with free PRM;
- In murine model of infection (*M. avium* and VL *leishmania*), PRM encapsulated in liposomes was able to reduce the bacterial load and parasite burden in a very high extent.
- The comparative *in vivo* evaluation of PRM liposomes and Ambisome[®] suggests that PRM liposomal formulations may be an alternative to Ambisome[®].

• Faculty of Pharmacy, University of Lisbon (iMed.ULisboa, Research Institute for Medicines)

Gaspar, M Manuela

Cruz, M. Eugénia

Susana Calado

Carla Eleutério

Sousa, Ana Cláudia

Pereira, Joana

- Instituto de Biologia Molecular e Celular, University Porto
- Instituto de Ciências Biomédicas Abel Salazar, University Oporto

Tomás, Ana M

Castro, Helena

U. PORTO INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAI UNIVERSIDADE DO PORTO

Acknowledgments: this work was partially supported by the project PPCDT/SAU-FCF/58355/2004. Gilead Sciences, Inc, USA provided the Ambisome® for the realization of animal studies.