

Survival Analysis approach in evaluating the efficacy of ARV treatment in HIV patients at the Dr GM Hospital in Tshwane, GP of S. Africa

> Marcus Motshwane Dept. of Statistics University of Limpopo Pretoria-S.A.

Background

- Survival analysis is aimed at estimating the probability of survival, relapse or death that occurs over time
- Relevant in clinical studies evaluating the efficacy of treatments in humans or animals
- Commonly deals with rates of mortality and morbidity

Problem statement

- The efficacy of ARV treatment at Dr G Mukhari hospital is favourable, but not clear as to the extend they are helpful to patients
- Survival analysis, a scientific statistical tool is conducted to-

-model ARV treatment efficacy in HIV patients
-confirm the association between survival or not of patients after ARV treatment

Data Analysis

- 2007-2011 raw data
- 318 HIV/AIDS cases
- 24 variables selected
- STATA (12), SAS (9.2) & SPSS(21)

Year

Finding Solutions for Africa

No. of days on ARV

2013 FACULTY OF HEALTH SCIENCES RESEARCH DAY

Finding Solutions for Africa

Age (Years)

Finding Solutions for Africa

Residential Area

2013 FACULTY OF HEALTH SCIENCES RESEARCH DAY

Finding Solutions for Africa

CD4 Count

Finding Solutions for Africa

Viral Load

Finding Solutions for Africa

Survival function

- Used to describe the time-to-event concept for all patients.
- This is the probability of an individual to survive beyond time "x" and is defined as :
 S(x)=P(X>x)
- Is a non-increasing function with a value of 1 at the origin and 0 at infinity.
- This is the case here with 1 at four days (4) and zero at the end of (1781) days, meaning that there is conformity with the survival function.

Kaplan-Meier Estimate

Finding Solutions for Africa

Kaplan-Meier estimate (cont)

- It is an estimator of the survival function- also called the product limit estimator
- It is a function of the probability of survival plotted against time
- In the *ith* interval, the probability of death can be estimated by: <u>death</u>

Kaplan-Meier (cont)

- The estimated survival probability is: $\hat{s}(t) = \pi \left(\frac{n_1 - d_1}{n_1} \right)$ Where,
- "d" = number of deaths observed at time "t"
- "n"=the number of patients at risk

Kaplan-Meier (cont)

- All patients were alive at time *t=o*
- They remained so until the first patient died after four (4) days.
- The estimate of the probability of surviving at zero is 1.0
- The estimate of the survival function is thus: $\hat{S}(t) = 1.0$ at t=0

The log-rank test

Log-rank test for equality of survivor functions

	Events	Events
group	observed	expected
+		
0	0	20.09
1	26	5.91
+		
Total	26	26.00
	chi2(1) =	105.26
	Pr>chi2 =	0.0000

The log-rank test (cont)

- The observed values are different from the expected values
- Produce a highly significant chisquared value (P < 0.05).
- The null hypothesis is rejected at the 5% level of significance
- Survivor functions of the two groups are not the same.

Hazard function

Finding Solutions for Africa

Hazard function

- It is the proportion of subjects dying or failing in an interval per unit of time
- As days pass, the number of patients dying also increases
- It is an increasing function as opposed to the non-increasing function of the Kaplan-Meier survival estimate.

Cox survival curve

Finding Solutions for Africa

Cox survival curve

- The graph of the estimated baseline survivor function
- The Cox approach is the most widely used regression model in survival analysis
- The probability of survival is 1 at time *t=0*
- Drops to "0" as the number of days elapses to maximum of 1781.

Cox regression model

No. of subjects =	312		Numbe	r of obs	= 312
No. of failures =	26				
Time at risk =	249675				
			LR ch	i2(7)	= 13.54
Log likelihood = -96.694567			Prob > chi2 =		= 0.0599
		<u></u>			
t Haz. Ra	atio Std. Err.	Z	P> z	[95% Conf	. Intervall
gender2 .6791	.803 .2879292	-0.91	0.361	.2958897	1.558979
age 1.032	.0259595	1.28	0.200	.9831025	1.084903
marital2 .3615	.1486429	-2.47	0.013	.1614947	.8093083
education2 1.084	.0966501	0.91	0.364	.9104767	1.291268
township2 .8435	.0977518	-1.47	0.142	.6721447	1.058628
cd4 .9987	908 .0023613	-0.51	0.609	.9941735	1.00343
viral	1 5.54e-08	-0.20	0.845	.99999999	1

Cox reg.model (cont)

 It asserts that the hazard rate for the *ith* subject in the data is

$$h(t \mid x_i) = h_0(t) \exp(x_i \beta_x)$$

The model is thus:

 $h(t \mid ARV) = h_o(t) \exp(0.67 \text{ gender} + 1.03 \text{ age} + 0.36 \text{ marriage} + 1.08 \text{ edu} + 0.84 \text{ township} + 0.99 \text{ cd} 4 + \text{ viral})$

Cox reg.model (cont)

- Since P> 0.05 for gender, age, education, township, c d4 count and viral load,
- No significant statistical difference amongst these variables with regard to the predictor variable, days ARV.

Conclusion

- 92%(292/318) were alive after ARV treatment as compared to 8%(26/318) that died
- At the 5% level of significance, significant hazard ratios were characterised by hazard ratios that are significantly different from "1", and 95% confidence interval (CI)
- ARV had a significant statistical impact on AIDS patients' survival
- Overall mortality rates have decreased

IN MEMORY

Mrs Obama

FINALLY

THANK YOU

Finding Solutions for Africa