About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology ‘Open Access’, OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.
About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.
Blood Loss and Intraoperative Salvage Procedure in Patients Underwent Re-operation Coronary Artery Bypass

Stojkovic B¹, Jovanovic T¹, Vukovic P², Calija B², Milojevic P², Maravic-Stojkovic V², Djukanovic B²

¹ Institute of Physiology, Belgrade University School of Medicine, Belgrade
² Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Serbia
Introduction

- Cell saving systems are commonly used during cardiac operations to improve hemoglobin levels and to reduce blood product requirements\(^1\).

- Preoperative patients` characteristics can predict the need for perioperative blood transfusion in cardiac surgery.
 - Use of cardiopulmonary bypass (CPB)
 - Hematocrit <30%, weight < 70 kg
 - Serum creatinin > 100 μmol/L

\(^1\text{Scrascia G et al. Perfusion 2012; 27(4):270-7.}\)
Background

- Currently, a large number of patients with coronary artery diseases are on antiplatelet therapy.
- A group of these patients require reoperative surgery (redo) after coronary artery bypass grafting (CABG).
CPB induces the inflammation

- Open-heart surgery is associated with the inflammatory response, which occurs as a result of
 - the contact of blood and artificial surfaces of the circuit,
 - ischemia-reperfusion damage,
 - surgical trauma,
 - changes in body temperature, and
 - release of endotoxin2,3.

Cell salvage procedure

Concentrations of IL-6 in supernatant

CABG redo CABG

Intraoperative blood management

- Cell saver procedure
 - collecting
 - washing
 - reinfusing
 - return own RBC
- Autologous blood transfusion
Aim

- We analyzed the effects of blood salvage through a cell saver on
 - postoperative hemoglobin levels,
 - the volume of the autologous blood transfusions reinfused after reoperative cardiac surgery
Dideco cell saver (Sorin, Italy) device was used for blood salvage procedure
Patients and Methods

- Fifty-four elective patients were included.
- In 30 patients, CABG was done for the first time in their life (Group 1). These patients have had low ejection fraction (LVEF).
- In the other 24 patients, the reoperative surgery was done several years after the first CABG (Group 2).
Patients and methods (cont.)

- **Fifty-four patients** (16% female, 84% male; aged 60.5 ± 6 vs. 66.2 ± 7 years) were divided in:
 - **Group 1** – CABG (n=30), and
 - **Group 2** – redo CABG (n=24)

- Two patients were excluded in Group 2 intraoperatively due to changed indication
Patients and Methods (cont.)

- Blood samples were collected
 - 24 h prior to the surgery
 - 6 h, and
 - 24 h after initiation of CPB
- Laboratory parameters and coagulation
 - RBC count, Hgb, Hct, Platelets, WBC, etc.
 - MEA (platelets function), Rotem, ACT, ATIII, fibrinogen, etc.
Patients and methods (cont.)

- **Time frame** (November 2010 – May 2011)
- **Outcomes** (clinical and other endpoints)
 - use of transfused blood products
 - blood loss, chest tube drainage
 - rethoracotomy and revision
 - atrial fibrillation rate (AF)
 - tracheal intubation time
 - ICU stay
 - hospital stay
 - mortality
Patients profile

CABG and reoperative CABG surgery

- First CABG
- RedoCABG
- RedoCABG + valve

1 2 3
<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender male (%)</td>
<td>25 (83)</td>
<td>19 (86)</td>
<td>0.9370</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.5±6.5</td>
<td>66.2±7.36*</td>
<td>0.0216</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>82±15.3</td>
<td>81.4±6.24</td>
<td>0.7064</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>26.08±4.8</td>
<td>35.68±10.72*</td>
<td>0.0004</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>4.66±1.37</td>
<td>8.1±2.34*</td>
<td>0.0001</td>
</tr>
<tr>
<td>Aspirin (yes/no)</td>
<td>93/7</td>
<td>76/24</td>
<td>0.1163</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>133.37±16.1</td>
<td>137.0±17.2</td>
<td>0.4487</td>
</tr>
<tr>
<td>Leukocytes x10⁹/L</td>
<td>7.83±1.86</td>
<td>7.39±3.23</td>
<td>0.5735</td>
</tr>
<tr>
<td>Thrombocytes x10⁹/L</td>
<td>244.13±62.9</td>
<td>186.86±45.32*</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

*p<0.05
Discussion

CPB-induced alterations in the haemostatic system are multifactorial, pertaining to excessive activation of coagulation and fibrinolytic pathways with interplay of cellular and soluble hemostatic and inflammatory systems;

hypothermia and hemodilution further complicate the situation.

Coagulopathy following CPB represents one extreme on a continuum of coagulation function, with perioperative... (e.g. coronary graft thrombosis, myocardial infarction, stroke and pulmonary embolism) at the other end of the spectrum.

P=0.02

Group 1 Age vs Group 2 Age

* P=0.02
For complicated cardiac surgery, such as re-operation with repeated use of CPB, as a control group in this study we choose the patients with poor LVEF (26% vs. 35%)

p = 0.0004
Table 2. Perioperative and lab data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPB (minutes)</td>
<td>82.83±21.43</td>
<td>127±57.93*</td>
<td>0.00</td>
</tr>
<tr>
<td>Hemoglobin (g/L)</td>
<td>104.31±10.12</td>
<td>114.0±13.3 *</td>
<td>0.00</td>
</tr>
<tr>
<td>Leukocytes x10⁹/L</td>
<td>13.63±10.42</td>
<td>16.25±4.79 *</td>
<td>0.03</td>
</tr>
<tr>
<td>Thrombocytes x10⁹/L</td>
<td>187.78±196.0</td>
<td>137.4±42.66</td>
<td>0.19</td>
</tr>
<tr>
<td>Autologous RBC (mL)</td>
<td>566.0±146.66</td>
<td>733.4±297.8*</td>
<td>0.05</td>
</tr>
<tr>
<td>Blood loss (mL)</td>
<td>868.5±587.5</td>
<td>1040±823.4</td>
<td>0.42</td>
</tr>
<tr>
<td>Allogenic RBC (mL)</td>
<td>505.5±169.4</td>
<td>556.66±332.04</td>
<td>0.61</td>
</tr>
</tbody>
</table>

* p<0.05
Table 3. Clinical outcomes after primo- and reoperative CABG surgery

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracheal intubation time (h)</td>
<td>16.07 (13.9-18.45)</td>
<td>19.20 (12.13-30.18)</td>
<td>0.30</td>
</tr>
<tr>
<td>Revision (%)</td>
<td>3 (10.0%)</td>
<td>2 (9.1%)</td>
<td>0.91</td>
</tr>
<tr>
<td>Arrhythmia (%)</td>
<td>5 (16.7%)</td>
<td>3 (13.6%)</td>
<td>0.76</td>
</tr>
<tr>
<td>ICU stay (days)</td>
<td>3.03 (2.32-3.95)</td>
<td>4.55 (2.76-7.53)</td>
<td>0.14</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>9.86 (7.9-10.4)</td>
<td>14.6* (10.2-20.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Survival (yes/no)</td>
<td>30/30</td>
<td>21/1</td>
<td>ns</td>
</tr>
</tbody>
</table>

* p<0.05
<table>
<thead>
<tr>
<th>Transfused products (ml)</th>
<th>Mean ±SD</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packed red blood cells transfused intraoperatively</td>
<td>505.5±169.4</td>
<td>556.6±332.0</td>
</tr>
<tr>
<td>Autologous erythrocytes reinfused intraoperatively</td>
<td>566.0±146.6</td>
<td>733.4±297.7</td>
</tr>
<tr>
<td>Fresh frozen plasma transfused</td>
<td>906.5±452.8</td>
<td>829.1±289.0</td>
</tr>
<tr>
<td>Crioprecipitate substitution</td>
<td>400.0±142.2</td>
<td>440.0±242.2</td>
</tr>
<tr>
<td>Packed red blood cells transfused postoperatively</td>
<td>771.1±809.5</td>
<td>1143.0±958.7</td>
</tr>
<tr>
<td>Platelets transfused</td>
<td>466.6±378.6</td>
<td>502.0±292.2</td>
</tr>
</tbody>
</table>
Results

- The two groups of patients had no significantly different hemoglobin levels before open heart surgery
 (133.37±16.1 g/L vs. 137.0±17.2 g/L; 0.44).

- The Group 2 of patients had a significant improvement in hemoglobin levels after operation
 (104.31±10.12 g/L vs. 114.0±13.3 g/L; 0.00).
Results (cont.)

- No differences were found for allogenic red blood cell transfusions intraoperatively (505.5± 169.4 vs. 556 ± 332.04; p: NS).
- The Group 2 of patients had higher amount of the blood loss (868.5± 587.5 vs. 1040 ± 823.4) but p: NS
- The Group 2 of patients had increased amount of the autologous RBC transfusions (566.0±146.6 vs. 733.4±297.8; p:0.05).
Blood transfusions

- Of 52 patients observed, 27 patients (51.92%) received a blood transfusion.
- In the Group 1, 19 (63%) patients received alloproducts:
 - 18 (60%) intraoperatively,
 - 13 (43%) postoperatively, and
 - 12 (40%) patients received alloproducts during and after surgery
- In the Group 2, 13 (59%) patients received alloproducts:
 - 9 (40%) intraoperatively,
 - 4 (18%) postoperatively, and
 - 13 (59%) patients during and after surgery.
Blood component substitution postoperatively

- Platelets transfused ($p = 0.88$),
- fresh frozen plasma ($p = 0.68$), and
- packed red blood cells transfused ($p = 0.32$) have not reached statistical significance.
- ICU stay was not influenced by used blood components transfusion, either allogenic or autologous.
The positive correlation between blood loss and ICU stay $r = 0.49$ ($p = 0.021$)
Discussion

- Blood salvage with a cell saving system improved postoperative hemoglobin levels, but affects coagulative and fibrinolytic systems\(^1\).
- These conditions could generate a consumption coagulopathy.
Bleeding in reoperative surgery

- Due to the re-exploration of chest these patients are at higher risk of perioperative bleeding, and requires consequential substitution of blood products6.

Microvascular bleeding remains a major problem following cardiac surgery with CPB.6-7

Approximately 4\% of patients require reoperation for hemorrhage,7-8 which is associated with increased mortality and morbidity9

with up to 5\% of patients receiving more than a 10 unit perioperative blood transfusion.8

6 Nuttall et al, Anesthesiology 2001; 94:773-781
7 Hall et al, Cardiovasc. Surg. 2002; 10:146-153
8 Woodman and Harker, Blood 1990; 76:1680-1697
Conclusions

- We have found that cell salvage procedure is safe and can significantly improve hemoglobin levels in reoperative CABG surgery.
- The use of cell sever could help to reduce the amount of allogenic blood transfusion, and thus,
- to prevent postponing the surgical procedure in patients scheduled for complicated open heart surgery.
Thanks' for your kind attention!!!!!!!
Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit:
www.omicsgroup.com
www.conferenceseries.com
http://cardiology.conferenceseries.com/