The conjunctiva as a site for investigation of human mucosal immunology in situ – elucidating the mechanisms of immune escape in adenovirus-induced epidemic keratoconjunctivitis (EKC)

Makoto Yawata¹,², Kevin John Selva², Jay Siak³, Liu Yu Chi³, Louis Tong³,⁴, Jodhbir S. Mehta³,⁴, Nobuyo Yawata²,³,⁴

¹Department of Pediatrics, School of Medicine, National University of Singapore
²Singapore Institute for Clinical Sciences, Agency for Science Technology and Research
³Singapore Eye Research Institute
⁴Duke-NUS Graduate Medical School
Inflammation of the ocular mucosal surface caused by adenovirus infection – EKC (epidemic keratoconjunctivitis)

Human NK cell populations and their regulation

Profiling NK cells in the conjunctiva mucosa over the course of EKC

Elucidating the mechanisms of immune subversion by adenoviruses
Group D human adenoviruses (HAdV) cause epidemic keratoconjunctivitis (EKC)

Subepithelial keratitis

Severe conjunctivitis

Pseudomembrane

Human adenovirus types are classified into seven groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Clinical diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12, 18, 31</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3, 7, 11, 14…</td>
<td>Conjunctivitis, Pharyngitis, Pneumonia</td>
</tr>
<tr>
<td>C</td>
<td>1, 2, 5, 6</td>
<td>Pharyngitis, Pneumonia</td>
</tr>
<tr>
<td>D</td>
<td>8, 9, 19, 37, 53, 54…</td>
<td>EKC</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>Conjunctivitis, Pneumonia</td>
</tr>
<tr>
<td>F</td>
<td>40, 41</td>
<td>Gastroenteritis</td>
</tr>
<tr>
<td>G</td>
<td>52</td>
<td>Gastroenteritis</td>
</tr>
</tbody>
</table>
Clinical features of epidemic keratoconjunctivitis (EKC)

Severe and prolonged inflammation
Group D Human adenoviruses (HAdV) cause EKC

Severe conjunctivitis Pseudomembrane

Mechanisms?

Inflammation

0 7

Conjunctivitis (non EKC) Conjunctivitis (EKC)
Natural Killer cells provide initial protection against virus infections and prime adaptive immunity.

- **Innate immunity**
 - NK cells
 - Cytotoxicity
 - Cytokine production

- **Adaptive immunity**
 - T cells
 - Cytotoxicity
 - Cytokine production
 - B cells
 - Immunoglobulin
 - Prime Th1 anti-viral response

Graph showing the timeline of viral load, IgM, IgG, and the transition from innate to adaptive immunity.
NK cells are controlled through a balance in signaling from inhibitory and activating factors.

Inhibitory

<table>
<thead>
<tr>
<th>Cell contact factors</th>
<th>Killer Cell Immunoglobulin-like Receptors (KIR2DL1/2/3, 3DL1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NKG2A</td>
</tr>
<tr>
<td></td>
<td>LILRB1</td>
</tr>
<tr>
<td></td>
<td>2DS1, 3DS1</td>
</tr>
<tr>
<td></td>
<td>NKG2C</td>
</tr>
<tr>
<td></td>
<td>NKG2D</td>
</tr>
<tr>
<td></td>
<td>DNAM-1</td>
</tr>
<tr>
<td></td>
<td>NKp30/46</td>
</tr>
<tr>
<td></td>
<td>CD16</td>
</tr>
<tr>
<td>Soluble factors</td>
<td>IL-10</td>
</tr>
<tr>
<td></td>
<td>TGF-β</td>
</tr>
<tr>
<td></td>
<td>IL-12, IL-15, IL-18</td>
</tr>
<tr>
<td></td>
<td>IFN-α</td>
</tr>
<tr>
<td></td>
<td>IL-2</td>
</tr>
</tbody>
</table>

Soluble factors

- IL-10
- TGF-β
- IL-12, IL-15, IL-18
- IFN-α
- IL-2
HLA class I-specific inhibitory receptors create NK cell heterogeneity

Inhibitory receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIR2DL1</td>
<td>HLA-C2</td>
</tr>
<tr>
<td>KIR2DL2/3</td>
<td>HLA-C1</td>
</tr>
<tr>
<td>KIR3DL1</td>
<td>HLA-B Bw4</td>
</tr>
<tr>
<td>KIR2DL4</td>
<td>HLA-G</td>
</tr>
<tr>
<td>KIR2DL5A,5B</td>
<td>?</td>
</tr>
<tr>
<td>KIR3DL2</td>
<td>HLA-A3/11</td>
</tr>
<tr>
<td>KIR3DL3</td>
<td>?</td>
</tr>
</tbody>
</table>

Activating receptors

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIR2DS1,2,3,4,5</td>
<td>HLA-C?</td>
</tr>
<tr>
<td>KIR3DS1</td>
<td>?</td>
</tr>
<tr>
<td>KIR2DL4</td>
<td>HLA-G</td>
</tr>
<tr>
<td>NKG2C</td>
<td>HLA-E</td>
</tr>
<tr>
<td>NKG2D</td>
<td>MICA&B/ULBP</td>
</tr>
<tr>
<td>CD16</td>
<td>Fcy</td>
</tr>
<tr>
<td>CD160</td>
<td>HLA-C</td>
</tr>
<tr>
<td>2B4</td>
<td>CD48</td>
</tr>
<tr>
<td>NKp30</td>
<td>BAT3</td>
</tr>
<tr>
<td>NKp44</td>
<td>HA</td>
</tr>
<tr>
<td>NKp46</td>
<td>HA</td>
</tr>
<tr>
<td>DNAM-1</td>
<td>CD112/155</td>
</tr>
</tbody>
</table>

Variegated expression

Homogeneous expression

Yawata et al. Blood 2009
‘Missing-self’ response is unique to NK cells

Reduced inhibition of NK cells through cognate KIR-HLA class I interaction

Normal cells

Activating ligand

HLA class I/HLA-E (inhibitory ligand)

Activating receptor

NK

Abnormal cells

NK

cytokine production

Normal cells

virally infected cells

cancer cells

cytolysis

iKIR/NKG2A
Human natural killer cell subsets have distinct function

<table>
<thead>
<tr>
<th></th>
<th>Mature</th>
<th>Immature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytotoxicity</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Cytokine production by monokines</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Chemokine receptors</td>
<td>CXCR1, CX3CR1</td>
<td>CXCR3, CCR5, CCR7</td>
</tr>
<tr>
<td>HLA specific inhibitory receptors</td>
<td>KIR, NKG2A</td>
<td>NKG2A</td>
</tr>
<tr>
<td>ADCC</td>
<td>CD16^{++}</td>
<td>CD16^{-}</td>
</tr>
</tbody>
</table>
NK cell populations in human organs

- **Lung**: CD56^{dim}
- **Tonsil**: CD56^{dim} < CD56^{bright}
 - IL-22 & IFN-g
- **Lymph node**: CD56^{dim} < CD56^{bright}
- **PBMC/spleen**: CD56^{dim} > CD56^{bright}
 - IFN-g
- **Intestine**: CD56^{bright}
 - IL-22
- **Decidua**: CD56^{bright}
 - Angiogenic cytokines
- **Lower reproductive tract**: CD56^{dim}
- **The eye**: ?
Mature CD56dim NK cells are the dominant type in the conjunctiva

Expression frequencies on CD56dim NK cells (%)

<table>
<thead>
<tr>
<th></th>
<th>PBMC</th>
<th>Conjunctiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead cell</td>
<td>51.7</td>
<td>0.08</td>
</tr>
<tr>
<td>CD45</td>
<td>72.8</td>
<td>0.08</td>
</tr>
<tr>
<td>CD56</td>
<td>97.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>

The ratio of CD56bright/CD56dim NK cells

PBMC: n=8
Conjunctiva: n=8

Yawata et al., Mucosal Immunology 2015
Ocular surface NK cells produce anti-viral cytokines, similar to those in peripheral blood.

Yawata et al., Mucosal Immunology 2015
CD56^{bright} NK cells increase in acute adenovirus-induced conjunctivitis

Mild conjunctivitis (HAdV-3)
- **Acute phase**
- **Convalescent phase**

Severe conjunctivitis (HAdV-8)
- **Acute phase**
- **Convalescent phase**

Yawata et al., Mucosal Immunology 2015
CD56bright NK cells increase in adenovirus-induced conjunctivitis

Yawata et al., Mucosal Immunology 2015
Elevated levels of chemokines that recruit $\text{CD56}^{\text{bright}}$ NK cells are identified in the tear fluid in the acute phase of adenovirus-infected conjunctiva.

Chemokines attracting $\text{CD56}^{\text{bright}}$ NK cells (CXCR3, CCR5)

![Bar charts showing levels of chemokines in the acute phase compared to other phases.]

Chemokines attracting CD56^{dim} NK cells (CXCR1, CXCR2, CXCR4)

![Bar charts showing levels of chemokines in the acute phase compared to other phases.]

- **Acute phase**
- **Convalescent phase**
- **Healthy control**

n=13 Multiplex beads assay

Yawata et al., Mucosal Immunology 2015
The CD56bright, immature NK cells express the receptors CXCR3 and CCR5 in the acute phase of viral inflammation
The conjunctiva NK cells recruited to the conjunctiva in adenovirus infection (CD56bright NK cells and NKG2A+NK cells) display are functionally suppressed.
Summary from *ex vivo* study

1. Mature NK cells are the dominant NK cell type in the conjunctiva.
2. Immature NK cells are recruited during adenovirus infection.
3. NKG2A⁺NK cells increase in severe conjunctival inflammation.
4. Mature NKG2A⁻NK cells display an activated state.
CD56^{dim} NK cells produce IFN-γ against HAdV-infection

![Diagram showing the process of CD56^{dim} NK cells producing IFN-γ against HAdV-infection.](image-url)
Cell contact-dependent NK cell activation in HAdV infection

Inhibitory receptor–ligand interactions?
Activating receptor–ligand interactions?

Yawata et al., Mucosal Immunology 2015
Weaker IFN-g production by NKG2A⁺NK cells
NKG2A⁺ NK cells showed lower response against HAdV-infected cells
Weaker IFN-γ production by NKG2A⁺NK cells

Activation < inhibition

Self specific iKIR or NKG2A

HLA class I

HLA-E

Normal cells

Abnormal cells

Mock

HAdV-3

HAdV-8

HLA class I

Ligand for KIR

HLA-E

Ligand for NKG2A
Lower IFN-g response by NK cells against group D HAdVs

Yawata et al., Mucosal Immunology 2015
DNAM-1 and NKG2D are key for NK cell activation against HAdV infection

![Graph showing intracellular IFN-γ (%)](image)

* *

n=3

NKG2A⁺NK cells NKG2A⁺NK cells

Yawata et al., Mucosal Immunology 2015
Ligands for DNAM-1 are reduced in HAdV-8 infection

- **CD155** (Ligand for DNAM-1)
- **CD112** (Ligand for DNAM-1)
- **MICA/B** (Ligand for NKG2D)
- **ULBP-1** (Ligand for NKG2D)
- **ULBP-2** (Ligand for NKG2D)
- **ULBP-3** (Ligand for NKG2D)

Isotype control
- Mock
- HAdV-3
- HAdV-8
Group D HAdVs down-regulate specific activating ligands on infected epithelia and dampen NK cell responses

Yawata et al., Mucosal Immunology 2015
Summary

- Immature CD56bright NK cells and NKG2A+ mature CD56dim NK cells are inhibited by up-regulated inhibitory ligand on HAdV-infected epithelium.

- Group D HAdV escape from mature NK cell anti-viral response by down-regulating activating ligands on infected cells.
Acknowledgements

Singapore Eye Research Institute (SERI)
Woon Kaing
Jessie Lim
Kevin John Selva
Yu-Chi Liu
Jodhibir Singh Mehta
Louis Tong
Wanwen Lan

Singapore National Eye Centre (SNEC)
Jay Jyh Kuen Siak
Anshu Arundhati

Singapore Institute for Clinical Sciences (SICS)
Nobuyo Yawata

National University of Singapore (NUS)
Naoki Yamamoto

Hokkaido University
Koki Aoki
Hidemi Watanabe
Shigeaki Ohno

Fukushima Medical University
Hisatoshi Kaneko

National institute of Infectious diseases
Tsuguto Fujimoto

Agency for Science, Technology and Research (A*STAR)
National Medical Research Council (NMRC), Singapore