About Omics Group

OMICS Group International through its Open Access Initiative is committed to make genuine and reliablecontributions to the scientific community. <u>OMICS</u> Group hosts over 400 leading-edge peer reviewed Open Access Journals and organize over ³⁰⁰ International Conferences annually all over the world. OMICS Publishing Group journals have over 3 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 30000 eminent personalities that ensure ^a rapid, quality and quick review process.

About Omics Group conferences

- **OMICS Group** signed an agreement with more than 1000 International Societies to make healthcare informationOpen Access. **OMICS Group Conferences make the**
parfect.platform.for.global.patworking.co.it.brings.together perfect platform for global networking as it brings together renowned speakers and scientists across the globe to ^amost exciting and memorable scientific event filled with
mush enlightening interestive esesions world elece much enlightening interactive sessions, world class exhibitions and poster presentations
- Omics group has organised 500 conferences, workshops and national symposium across the major cities includingSanFrancisco,Omaha,Orlado,Rayleigh,SantaClara,Chicago,Philadelphia,Unitedkingdom,Baltimore,SanAntanio,Dubai,Hyderabad,Bangaluru and Mumbai.

Optoelectronics ofNanocomposites

Mahi R. Singhmsingh@uwo.ca

Department of Physics and AstronomyWestern University

(The University of Western Ontario)London, Canada

optics2014

Niagara Falls

Collaborators

Graduate Students

J. Cox

D. Schindel

C. Racknor

Ifte Haque

M. Brzozowski

S. Balakrishan

Undergraduate Students

J. Richmond

J. Flannery

J. McKechnie

Scientists

Scott Barrie

Chandra Shekhar

S.P. Singh

International Collaborations

UK

Y. Zhang

D. BirchY. Chen

SpainM. Antón,

F. Carreño,

S. Melle,

O. Calderón,

E. Cabrera-Granado,

USA

S. Sadeghi

S. Pinnepalli

R. Agarwal

G. Gumbs

Argentina

C. Bildering

A. Bragas

Israel

Boris Fainberg HITEugene Kogan- Bar IlanM. Auslender: Ben Guiran

Egypt

Aarafa H. Aly

Canadian Collaborations

M. Zinke-Allmang

S. Mittler

Jai Sabrinathan

R. Lipson

Hybrid Nanomaterials

Nanomaterials:

- •**Metamaterials**
- •Graphene
- \bullet Semiconductor nanoparticles (quantum dots, nanocrystals, nanowires, etc.)
- •Metallic nanoparticles (spheres, nanorods, nanodisks, etc.)

Substrate examples:

> Metamaterials

> Dielectric mote -Dielectric material**≻Excitonic material** -Polaritonic material-Polar materials≻Photonic crystal

Graphene

Semiconductor Quantum Dot

Hybrid Nanomaterials

By using various combinations of nanostructures one can create enormous numbers of nanocomposite (hybrid) materials.

Substrates: dielectrics, photonic crystals, metamaterials

Metallic Nanomaterials: Plasmonics

J. Cox and Mahi Singh, Nanotechnology (2013)

□ Metallic nanostructures: Gold, silver, copper
□ Metals have free electrons which ossillate \square Metals have free electrons which oscillate \square collectively to produce plasmons

 $\bigg)$ \in (ω) \approx $\left($ ≈ $\mathcal{L}(\boldsymbol{\omega}) \approx \left(1 - \frac{\boldsymbol{\omega}_p^2}{\sigma^2}\right)$ 1ω ω) \approx | \perp *p* Dielectric constant $\begin{pmatrix} 2 & 2 \end{pmatrix}$

$$
\omega_p = \sqrt{\frac{n(\varepsilon_F)e^2}{m}}
$$

Dispersion relation

 ε_F = Fermi energy

Dielectric constant is negative

Metallic Nanomaterial: Graphene

Graphene was invented by a Canadian physicist

P.R. Wallace (1915-2006) McGill University, Montreal

Worked with Leopold Infeld, (Albert Einstein), NF Mott

1947: P.R. Wallace : Phys. Rev. 71, 622-634 (1947)

Graphite-moderated nuclear reactor project (this project was part of a plan to develop nuclear weapons during the **II world war)**

Graphene is a gapless semiconductor

2010 Nobel Prize in Physics:Andre Geim, Konstantin Novoselov

Gapless Semiconductors Mahi Singh and PR Wallace

- **M. SINGH and P.R. WALLACE , J. PHYSICS C 20, 2169, (1987).**
- **GUPTA, WALLACE and SINGH , J .PHYSICS C19, 6373 (1986).**
- **M. SINGH and P.R. WALLACE, SOLID STATE COMMUN. 53, 165 (1985).**
- **M. SINGH and P.R. WALLACE, J. PHYSICS C17, 5303 (1984).**
- **M. SINGH amd PR Wallace, J. PHYS. CHEM. SOLIDS 45,409 (1984).**
- **M. SINGH, P.R. Wallace and J. Leotin, J. PHYS. C17, 1385 (1983).**
- **M. SINGH and P.R. WALLACE , J. PHYS. C16, 3877 (1983).**
- **SINGH, LEOTIN and WALLACE, PHYS. STAT. SOLIDI B115, 105 (1983).**
- **M. SINGH and P.R. WALLACE , SOLID STATE COMM. 45, 9 (1983).**
- **M. SINGH, J. and P.R. WALLACE , PHYSICA B117, 441 (1983).**
- **SINGH, P.R. WALLACE, ASKENAZY, J. PHYSICS C15, 6731 (1982).**
- **SINGH, CISOWSKI, WALLACE, PORTAL, BROTO, Phys. Stat SOLIDI B114, 481 (1982).**

(1915-2006)P.R. Wallace McGill University, Montreal

- \blacktriangleright **I called him "SIR" and he did not like it.**
- **I have a graduate student** \blacktriangleright **who always calls me "SIR" and I like it and he is my favorite student.**

Graphene : Plasmonics

P.R. Wallace, Phys. Rev. 71, 622-634 (1947)

 \blacktriangleright **Graphene is a two dimensional sheet of carbon atoms which are arranged in the honey comb structure.**

Carbon atoms (Honey comb structure)

Band structure:

- \blacktriangleright **Gapless semiconductor and acts as a metal.**
- \blacktriangleright **k.p method**
- $\mathcal{E}_k = \hbar v_F k$ \blacktriangleright **Tight binding method**

Dielectric constant

$$
\epsilon_m(\omega) \approx \left(1 - \frac{\omega_p^2}{\omega^2}\right) \qquad \omega_p = \sqrt{\frac{n(\varepsilon_p)e^2}{m}}
$$

Dielectric constant is negative $\overset{\wedge}{\mathbf{e}}^{\mathsf{A}\mathsf{N}}$

Metamaterials: Plasmonics

 Mahi Singh. J. Cox, M. Brzozowski **: J. Physics D: Applied Physics (2014)Physical Review A (2014) Mahi Singh. C. Rackner, M. Brzozowski:**

J.C. Bose, Proc. Royal Soc. 63, 146 (1988) **J.B. Pendry**, Phys. Rev. Lett. 85, 3966 (2000)Artificial materials made from negative dielectric constant an negative magnetic permeability

Dielectric constant negative magnetic permeability

$$
\epsilon_m(\omega) \approx \left(1 - \frac{\omega_p^2}{\omega^2}\right)
$$

$$
\mu_m(\omega) \approx \left(1 - \frac{F\omega^2}{\omega^2 - \omega_0^2}\right)
$$

Note: ϵ **and µ are negative between A and B**Dielectric constant is negative

Metamaterials: plasmonics

 Mahi Singh. J. Cox, M. Brzozowski **: J. Physics D: Applied Physics (2014)Physical Review A (2014) Mahi Singh. C. Rackner, M. Brzozowski:**

Natural Materials

 $\mathbf{k} \times \mathbf{H} = -|\varepsilon| \omega \mathbf{E}$ $\mathbf{k} \times \mathbf{E} = +|\mu| \, \omega \mathbf{H}$ ×H = −

Poynting Vector (direction of the energy flow)

 S **F**L \triangleleft H

Natural materials follow the Right Hand Rule (Right handed materials)

Metamaterials

Maxwell equations:

Poynting Vector (direction of the energy flow)

 $\times E = -$
 $\times H = +$

 $\mathbf{k} \times \mathbf{H} = +|\varepsilon| \omega \mathbf{E}$

 $\mathbf{k} \times \mathbf{E} = -|\mu| \omega \mathbf{H}$

Metamaterials follow the Left Hand Rule (Left handed handed materials)

entirely invisible in light.

$$
\omega_p = \sqrt{\frac{n(\varepsilon_F)e^2}{m}} \qquad \varepsilon_F = \text{Fermi energy}
$$

Parameters: Radius= 8 nm; $v_F = c/300$; μ = 10000 cm²V⁻¹s^{-1;} ε_b = 10.89 (GaAs)

Photonic Crystals: Photonics

Photonic Materials: Photonics

I. Haque and Mahi Singh. J. Phys. Condens. Matter 19, 156229 (2007)

Source: S. John, O. Toader and K. Busch, PBG Materials: A Semiconductor for Light, 2002.

Metamaterials: Photonics

 Mahi Singh. J. Cox, M. Brzozowski **: J. Physics D: Applied Physics (2014)Physical Review A (2014) Mahi Singh. C. Rackner, M. Brzozowski:**

Band structure:

Metamaterials have Periodic structure

Solving Maxwell equations in periodic refractive index

2-D-Metamaterial

3-D metamaterials

Metamaterials/photonic crystal

Photonic Crystals: Applications

\Box **Photons are confined in a nano-size material**

Photons are confined in 2-d

 1.0 annoyable described α α α α α α O O O O. 51. m **ATT** O 0.0 1. Z (um) 0 -2 -3. nanometer \mathcal{L} -4 **CO** п. Ω Ω O O -5 \circ T. Đ, -6. -1.0 -6 -2. 6 $X(\mu m)$

Contour Map of Ey

Source: math.utwente.nl/~hammer/Metric/Illust/ http://www.photeon.com/images/pc/animation.gif

90º Light Splitter

Applications: Polaritonic Materials

C. Racknor, Mahi Singh. Phys. Rev. B 82, 155130 (2010)Cox, Singh and Racknor, **Nano Lett. 11, 5284 (2011)**

- \blacktriangleright Polaritonic materials have ^a band gap that lies in the terahertz frequency range.
- \blacktriangleright This opens ^a new realm of possibilities for opto-electronic devices because this range of frequencies is intermediate between the operational frequencyranges of photonics and electronics.

Graphene/Quantum Dot Hybriddeposited on a Photonic Crystal /Metamaterials

- > We consider a nanocomposite consisting of a
example a sensible and a OD graphene nanoflake and a QD
- > The graphene-QD nanocomposite is embedded in a photonic crystal
- > When external laser fields are applied,
cleamens in graphens interact with ave plasmons in graphene interact with excitons in the QD
- > Photonic crystal serves as an electromagnetic
reconvoir for the OD reservoir for the QD

Cox , Singh et al, Physical Review B 86, 125452 (2112) Singh ,Cox et al , Advance Materials (2013)

Dipole-Dipole Interaction Dipole

 \triangleright In QD-MNP hybrids, excitons in the QD and localized surface plasmons in the MNP interact via the dipole-dipole interaction (DDI)

 \triangleright This interaction is strong when the QD and MNP are in close proximity and their optical excitation frequencies are resonant

Excitons-SPPs Interaction
Singh. J. Cox. M. Brzozowski : J. Physics D: Applied Physics Mahi Singh. J. Cox, M. Brzozowski : J. Physics D: Applied Physics (2014)

-In QD-MNP hybrids, excitons in the QD and localized surface plasmons in the MNPinteract via the excitons-SPPs (dipole-dipole interaction (DDI)).

 \triangleright This interaction is strong when the QD and MNP are in close proximity and their optical excitation frequencies are resonant

Graphene/Quantum Dot Hybrid

Cox, Singh et al., Physical Review B 86, 125452 (2012)

- > It is considered that the resonance frequencies of the QD lie near $\omega_{\rm sp}$ = 0.803 eV
- > Initially we consider the case where the transition dipole moments (fields) μ_{12} (E_2) and μ_{13} (E_3) are aligned along the *z*- and *x*-directions, respectively
- \triangleright Therefore only μ_{13} and E_3 couple to graphene

Power Absorption in QD

- \blacktriangleright Here the power absorbed by the QD
is calculated while varving the calculated while varying graphene-QD separation R
- \blacktriangleright Narrow minima for larger values of R
is due to electromagnetically electromagnetically induced transparency
- \blacktriangleright For small values of R , the spectrum splits into two peaks due to the DDI
- \blacktriangleright Power is absorbed by the QD at two frequencies
- \ge (a) δ₃ = 0; (b) δ₃ = 10 μeV

Cox , Singh et al, Physical Review B 86, 125452 (2112)

Switching Mechanism: One-photon spectroscopy
Cox, Singh et al., Physical Review B 86, 125452 (2012)

Sensing Mechanism: Substrate effect

- -**When a QD is in contact with biomolecules, molecular beacons, DNA or aptamers, its dielectric constant can be modified.**
- **This effect has also been verified experimentally by Dong et al., where upon integrating a molecular beacon to a CdTe-QD it was found that the fluorescence quenching due to graphene is modified.**
- H. Dong et al., Anal. Chem 82, 5511 (2010).
- • $\epsilon_{\rm d}$ = 10 (dotted curve)
- \bullet • $\varepsilon_{\rm d}$ = 12 (solid curve)
- \bullet • $\varepsilon_{\rm d}$ = 14 (dashed curve)
- • Energy transfer to graphene when the QD dielectric constant is changed
	- Detection of biological molecules

$$
E_{dip} \approx \left(\frac{1}{[(2\epsilon_b + \epsilon_d)/3\epsilon_b]} \frac{P_{QD}}{R^3}\right)
$$
 Cox and Singh, Physical Review
Singh, Racknor and Schindel App

Cox and Singh, Physical Review B 86, 125452 (2012); Singh, Racknor and Schindel App. Phys. Lett. 101, 051115 (2012)

Two-Photon Process: QD-Graphene DDI splitting

- \blacktriangleright Here the two-photon absorption coefficient is calculated as a function of the two-photon detuning parameter.
- \blacktriangleright The center-to-center distance between the quantum dot and graphene nanodisk, R, is varied

R

Quantum Dot

External Field

Two-photon photoluminescence Quenching

 $\rm Cox,~Singh, Bildering,~Bragas, Advanced Materials~1, 460~(2013)$

- • Two-photon photoluminescence (TPPL) from CdS QDs alone (dashed curve) and from QD-Au MNP hybrid system (solid curve)
- TPPL from the QDs is quenched in the presence of the \bullet MNPs since the energy is transported from QD to MNP.

Second Harmonic Generation

Singh., Nanotechnology 24 (2013) 125701

Enhancement effect:

Enhancement of SHG is predicted due DDISwitching on and off of the SHG is found

Second Harmonic GenerationEnhancement and switching

 $|1\rangle$

Control larer

MNP

 $\ket{2}$

DDI

ω

ω

Cox, Singh, Bildering, Bragas, Advanced Materials 1, 460 (2013)

\blacktriangleright **Enhancement of SHG** :

observed in 40 nm Au MNP-CdS-QD hybrid system . $R = 41.5$ nm.

$$
I_{SHG}^{QD} \approx \left| \Omega_{probe} + \Omega_{ddi} + \Omega_{SHG}^{mnp} \right|^{2}
$$

 \blacktriangleright **Switching: Due to control field intensity and frequency**

Switching DDI;: Dotted curve to solid curve

 -Dotted curve: The control field frequency is not resonance with the SPP of MNP: No DDI

$$
I_{SHG}^{QD} \approx \left| \Omega_{probe} + \Omega_{SHG}^{mnp} \right|^{2}
$$

\n
$$
\gg \text{Solid curve: With control field : DDI}
$$

\n
$$
I_{SHG}^{QD} \approx \left| \Omega_{probe} + \Omega_{ddi} + \Omega_{SHG}^{mnp} \right|^{2}
$$

NO SHG in Ag-MNP- QD

Control field frequency is not resonance with AU surface plasmon frequency.

Three level Quantum Dot

Mahi Singh. J. Cox, M. Brzozowski : J. Physics D: Applied Physics (2014))

R

 E_3

 $E₂$

Z⁺

x

- > It is considered that the resonance frequencies of the QD lie near $\omega_{\rm sp}$
- > Initially we consider the case where the transition dipole moments (fields) μ_{12} (E_2) and μ_{13} (E_3) are aligned along the $z\hbox{-}$ and $x\hbox{-}$ directions, respectively
- > Therefore only μ_{13} and E_3 couple to SSP of metamterials

Enhancement of photoluminescencein metamaterials hybrid

Mahi Singh. J. Cox, M. Brzozowski : J. Physics D: Applied Physics (2014) Mahi Singh. C. Rackner, M. Brzozowski:

> Quantum Dot(PbSe)

> > **Glass Substrate**

Gold Film

 (50 nm) **QD/PMMA** Layer (180) nm)

 $\omega_{\rm sp}$

•Peak height is enhanced in the presence of the metamaterial (DDI)•Peak position changes with the unit cell size (shift in the SPP energy)

Conclusions

Hybrid Nanomaterials

Switching mechanism

□Sensing mechanism

PL enahncement

Ane ke liye DHANYABAD

(Thanks for coming)

Let Us Meet Again

We welcome all to our future group conferences of Omics group internationalPlease visit:www.omicsgroup.com

www.Conferenceseries.com

http://optics.conferenceseries.com/