Lignocellulolytic Activity of Soil Fungi Isolated from Different Scenarios of Conservation Agriculture

Madhu Choudhary^{*1}, Neelam Garg¹ and PC Sharma²

¹Deparment of Microbiology, Kurukshetra University, Kurukshetra-136 119, Haryana ²Division of Crop Improvement, CSSRI, Karnal -132 001, Haryana Conservation agriculture (CA) aims to conserve, improve and make more efficient use of natural resources through integrated management of available soil, water and biological resources combined with external inputs. It contributes to environmental conservation as well as to enhanced and sustained agricultural production. It can also be referred to as resource efficient or resource effective agriculture." (FAO <u>http://www.fao.org/ag/ca/11.html</u>)

Why Conservation Agriculture is needed?

(i) Overexploitation of groundwater resources: leading to a decline in the groundwater table increased energy cost of pumping water, Detrioration of groundwater quality

(ii) declining soil organic matter and increasing multiple deficiencies of major nutrients (N, P, K, and S) and micronutrients (Zn, Fe, and Mn) due to their over mining from soils

(iii) excessive withdrawal of water for irrigation also led to impurities (heavy metal contamination etc.) and increasing salinity

(iv) the development of herbicide resistance and a shift in weed flora and pest populations

(v) poor management of crop residues, leading to their burning.

(vi) food and nutritional insecurity

Unsustainability mainly caused by:

• Tillage

- Soil Organic matter decline
- Soil structural degradation
- Water and wind erosion
- Reduced water infiltration rates
- Surface sealing and crusting
- Soil compaction
- Insufficient return of organic material
- Mono cropping

Unsustainable to Sustainable Agriculture What components needs shift?

Unsustainable Agriculture	\rightarrow	Sustainable Agriculture	
Ploughing/tilling the soil	\rightarrow	Minimum soil disturbance- <i>No-</i> <i>till/minimum till</i>	
Removing all organic material	\rightarrow	Rational soil cover- <i>Residue management</i>	ROUTES
Monoculture	\rightarrow	Efficient crop rotations- Crop diversification	Crop Diversification

CA includes all of the other principles of sound crop management – we just need to remove the ills of the past

CA is based on three principles applied simultaneously (FAO, 2009)

Minimum mechanical soil disturbance (the minimum soil sow the seed)

Permanent organic soil cover (retention of adequate disturbance necessary to levels of crop residues on the soil surface)

Diversified crop rotations/ including cover crops (to help moderate possible weed, disease and pest problems)

correlated with the improvement of soil structure

higher availability of organic substrates for microorganisms.

Improved soil structure allows

better soil aeration

diffusion of water and nutrients through the soil profile,

while the retention of crop residues

enhances microbial activity and

the soil microbial biomass content.

These improvements in soil quality can also increase soil microbial diversity, thus protecting crops against pests and diseases through competition for soil nutrients.

Drivers of agricultural change, crop rotation, tillage, crop establishment method, and residue management of different scenario :

÷						
		Scenario 1	Scenario 2	Scenario 3	Scenario 4	
	Drivers of	Business as	Increasing productivity	System designed to	Futuristic intensive and	
	change	usual	and income by	deal with water, <u>labor</u> ,	diversified cropping	
		(current	intensification and best	and energy scarcity	systems to deal with	
		farmers'	management practices	and degrading soil	water, labor, and energy	
		practice)	(integrated crop and	health (Conservation	scarcity and degrading	
			resource management)	agriculture based	soil health (Conservation	
				systems)	agriculture based	
					systems)	
	Crop rotation	Rice-wheat	Rice-wheat-mungbean	Rice-wheat-mungbean	Maize-wheat-mungbean	
					·········	

1	1			
Tillage	Conventional till	Conventional/Zero-till	Zero-till	Zero-till
	Rice- puddling	Rice- puddling	Rice- zero-till	Maize- zero-till
	Wheat-	Wheat-zero-till	Wheat-zero-till	Wheat-zero-till
	Conventional till	Mungbean- zero-till	Mungbean- zero-till	Mungbean- zero-till
Crop	Rice-transplanting	Rice-transplanting	Rice- drill seeding	Maize- drill seeding
establishment method	Wheat- broadcast	Wheat- drill seeding	Wheat- drill seeding	Wheat- drill seeding
		Mungbean- drill/relay broadcast	Mungbean- drill/relay broadcasted	Mungbean- drill/relay broadcasted
Residue	All residue	Partial rice residue	Full (100%) rice and	Full (100%) maize and
management	removed	(anchored) retained;	mungbean whereas	mungbean whereas
		partial wheat residue	partial (anchored)	partial (anchored)
		(anchored); and full	wheat residue	wheat residue
		mungbean residues	retained on soil	retained on soil
		incorporated during	surface	surface
		puddling in rice		
		season		

Scenario 2 R-W-M CT/ZT

Scenario 4 M-W-M ZT

Lignocellulose is the major structural component of plants and represents a major source of renewable organic matter. Lignocellulose consists of lignin, hemicellulose and cellulose.

In systems where crop residue is left on the surface, saprophytic fungi dominate, slowly breaking down more resistant substrates (Moore et al., 2003).

- Isolation of fungus and their screening for cellulolytic activity
- Quantitative assay of lignocellulolytic activity of screened isolates.
- Study of selected fungus for decomposition of lignocellulosic residues in laboratory

72 fungus isolated from soil on three types of media- PDA,RBA and CDA

Primary screening of isolates for cellulolytic activity

No zone

Clearing zone around growth

Growth of fungus on Carboxy Methyl Cellulose agar plates showing cellulolytic activity

Growth of fungus on Tannic acid agar plates showing lignolytic activity

After primary screening Isolates having $I_{CMC} > 0.5$ were selected. These 19 cultures were grown in broth containing powdered straw as a sole source of carbon. Culture filtrate was used for estimation of different enzyme activity. Activity of CMCase is recorded upto 0.479 IU/ml, Cellobiase activity upto 0.379 IU/ml, Fpase activity upto 0.207 IU/ml and Xylanase activity is upto 1.6849 IU/ml.

Xylanase IU/ml

Fpase

Cellobiase

CMCase

On the basis of comparative study of enzyme activities 11 isolates are selected for further research. Selected fungus were inoculated on solid media composed of chopped straw and having 70 % moisture.

Enzyme activities in Solid State

Isolate	Cellobiase	CMCase	FPase	Xylanase
MWM 1/3	1.338	4.617	1.051	21.938
MWM 1/6	0.325	4.326	0.745	18.244
MWM 1/9	4.840	4.410	0.709	18.866
MWM 1/10	1.275	3.528	0.656	22.060
RZWM 2/2	1.533	4.960	1.413	22.400
RPWM 3/1	2.007	4.430	0.678	17.871
RPWM 3/2	2.685	2.455	1.093	19.924
RPW 4/7	0.403	2.270	0.320	18.173
RPW 4/9	1.635	1.938	0.407	10.683
RPW 4/13	1.733	2.133	0.220	12.701
RPW 4/14	0.047	.807	0.138	2.359

Morphological identification of Isolates

Isolate number	Isolate name
MWM 1/3	Aspergillus flavus
MWM 1/6	Aspergillus terreus
MWM 1/9	Aspergillus terreus
MWM 1/10	Aspergillus flavus
RZWM 2/2	Penicillium janthinellum
RPWM 3/1	Aspergillus niger
RPWM 3/2	Alternaria alternata
RPW 4/7	Aspergillus terreus
RPW 4/9	Penicillium oxalicum
RPW 4/13	Penicillium oxalicum
RPW 4/14	Cladosporium cladosporoides

Solid media was filtered by muslin cloth and residual straw was collected. Residual straw was dried and further analysis for ADF, NDF, cellulose and lignin is going on.

THANK YOU