Evaluation of Condensate Stabilization Plant through Static and Dynamic Process Simulation

Authors: Machado, R.; Marangoni, C.; Miotto, F.; Querino, M.

2nd International Conference and Expo on

October 27-28, 2016 Rome, Italy

Today's Agenda:

\checkmark Introduction
\checkmark Objective
\checkmark Methodology
\checkmark Results and Disscussion
\checkmark Conclusion
\checkmark References
\checkmark Acknowledgements

Introduction

\checkmark Condensate is the liquid formed by the condensation of a gas, specifically, the hydrocarbon liquid separate from natural gas because of changes in temperature and pressure when the gas from the reservoir was delivered to the surface separators. Such condensate remains a liquid at atmospheric temperature and pressure.
\checkmark Condensate stabilization is the removal of light components from hydrocarbon liquid to lower its vapour pressure to a desired level. Stabilization may be used to meet a required pipeline sales contract specification or to minimize the vaporization of the hydrocarbon.

Introduction

\checkmark How can this be done?

Introduction

\checkmark Three Stage Separation

\checkmark Based on actual plant data in the literature, it carried out a simulation using Aspen HYSYS® software to predict the opposite process behavior on some proposed amendments (Rahmanian, Ilias and Nasrifar, 2015).
\checkmark In the static software module, changes in temperature, pressure and flow of plant behavior were evaluated.
\checkmark In the dynamic software module, a control system was tested and configured to stabilize disturbances in the model.

Methodology

\checkmark In this work we use the software Aspen Hysys ${ }^{\circledR}$ version 8.6
\checkmark Fluid-package: Peng-Robinson
\checkmark Feed condition

Components	Mole fraction	Components	Mole fraction
Methane	0,217883	n-Nonane	0,046242
Ethane	0,054357	n-Decane	0,037196
Propane	0,051765	Cumene	0,005444
i-Butane	0,018877	n-C11	0,087716
n-Butane	0,038880	EGlycol	0,048356
i-Pentane	0,022965	1Pentanthiol	0,001091
n-Pentane	0,025828	nBMercaptan	0,000505
n-Hexane	0,037949	nPMercaptan	0,001477
Mcyclopentan	0,003282	COS	0,000007
Benzene	0,002240	E-Mercaptan	0,001687
Cyclohexane	0,004598	M-Mercaptan	0,000130
Mcyclohexane	0,012366	H2O	0,129641
Toluene	0,003802	H2S	0,010158
n-Heptane	0,046697	CO2	0,012006
n-Octane	0,054087	Nitrogen	0,002621
p-Xylene	0,020148	SUM	$\mathbf{1 , 0 0 0 0 0 0}$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	25		Vapour phase	0,1179
Pressure (kPa)	4500		Liquid phase	0,7466
Molar flow $\left(\mathrm{kmol} \cdot \mathrm{h}^{-1}\right)$	4000		Aqueos phase	0,1354

Methodology

\checkmark Process Flow Diagram for the Condensate Stabilization

Results and Discussion

\checkmark For the Static Process Simulation

Results and Discussion

Results and Discussion

Results and Discussion

Results and Discussion

Conclusions

\checkmark The simulation performed for the condensate stabilization provided specification of the products like the RVP criteria, were presented in this work similarly to all changes programmed into the system.
\checkmark The changes in the feed stream (temperature, pressure and flow) influenced product quality.
\checkmark It is necessary to set other process specifications to simulate the conditions of condensate stabilization.
\checkmark It was possible to develop dynamic models for the process with added columns for regeneration of MEG and for separating the final product.
\checkmark The adjustment of the controllers is essential to the stabilization of the dynamic models.

References

\checkmark Peng D. and Robinson D. A new two-constant equation of state. Industrial and Engineering Chemistry 15, 59-64, 1976.
\checkmark Mohaktab, S.; Poe, W.; Speight, J. Handbook of Natural Gas Transmission and Processing. Gulf Professional Publishing 672, 2006.
\checkmark Rahmanian, N.; Ilias, I.; Nasrifar, K. Process simulation and assessment of a back-up condensate stabilization unit. Journal of Natural Gas Science and Engineering 26, 730-736, 2015.
\checkmark Rahmanian, N. et al. Simultation and optimization of a condensate stabilization process. Journal of Natural Gas Science and Engineering 32, 453-464, 2016.

Acknowledgements

2nd International Conference and Expo on Oil and Gas

October 27-28, 2016 Rome, Italy

gD
 Gás Natural e Biocombustiveis

