



# **Evaluation of Condensate Stabilization Plant through Static and Dynamic Process Simulation**

# Authors: Machado, R.; Marangoni, C.; Miotto, F.; Querino, M.

2nd International Conference and Expo on **OII and Gas** 

October 27-28, 2016 Rome, Italy

- $\checkmark$  Introduction
- ✓ Objective
- ✓ Methodology
- ✓ Results and Disscussion
- ✓ Conclusion
- ✓ References
- ✓ Acknowledgements

- Condensate is the liquid formed by the condensation of a gas, specifically, the hydrocarbon liquid separate from natural gas because of changes in temperature and pressure when the gas from the reservoir was delivered to the surface separators. Such condensate remains a liquid at atmospheric temperature and pressure.
- ✓ Condensate stabilization is the removal of light components from hydrocarbon liquid to lower its vapour pressure to a desired level. Stabilization may be used to meet a required pipeline sales contract specification or to minimize the vaporization of the hydrocarbon.

#### ✓ How can this be done?



#### ✓ Three Stage Separation



- Based on actual plant data in the literature, it carried out a simulation using Aspen HYSYS<sup>®</sup> software to predict the opposite process behavior on some proposed amendments (Rahmanian, Ilias and Nasrifar, 2015).
- ✓ In the static software module, changes in temperature, pressure and flow of plant behavior were evaluated.
- ✓ In the dynamic software module, a control system was tested and configured to stabilize disturbances in the model.

# $\checkmark$ In this work we use the software Aspen Hysys<sup>®</sup> version 8.6

- ✓ Fluid-package: Peng-Robinson
- ✓ Feed condition

| Components   | Mole fraction | Components   | Mole fraction |
|--------------|---------------|--------------|---------------|
| Methane      | 0,217883      | n-Nonane     | 0,046242      |
| Ethane       | 0,054357      | n-Decane     | 0,037196      |
| Propane      | 0,051765      | Cumene       | 0,005444      |
| i-Butane     | 0,018877      | n-C11        | 0,087716      |
| n-Butane     | 0,038880      | EGlycol      | 0,048356      |
| i-Pentane    | 0,022965      | 1Pentanthiol | 0,001091      |
| n-Pentane    | 0,025828      | nBMercaptan  | 0,000505      |
| n-Hexane     | 0,037949      | nPMercaptan  | 0,001477      |
| Mcyclopentan | 0,003282      | COS          | 0,000007      |
| Benzene      | 0,002240      | E-Mercaptan  | 0,001687      |
| Cyclohexane  | 0,004598      | M-Mercaptan  | 0,000130      |
| Mcyclohexane | 0,012366      | H2O          | 0,129641      |
| Toluene      | 0,003802      | H2S          | 0,010158      |
| n-Heptane    | 0,046697      | CO2          | 0,012006      |
| n-Octane     | 0,054087      | Nitrogen     | 0,002621      |
| p-Xylene     | 0,020148      | SUM          | 1,000000      |





### ✓ Process Flow Diagram for the Condensate Stabilization



#### ✓ For the Static Process Simulation











- ✓ The simulation performed for the condensate stabilization provided specification of the products like the RVP criteria, were presented in this work similarly to all changes programmed into the system.
- ✓ The changes in the feed stream (temperature, pressure and flow) influenced product quality.
- ✓ It is necessary to set other process specifications to simulate the conditions of condensate stabilization.
- ✓ It was possible to develop dynamic models for the process with added columns for regeneration of MEG and for separating the final product.
- ✓ The adjustment of the controllers is essential to the stabilization of the dynamic models.

- ✓ Peng D. and Robinson D. A new two-constant equation of state. Industrial and Engineering Chemistry 15, 59-64, 1976.
- ✓ Mohaktab, S.; Poe, W.; Speight, J. Handbook of Natural Gas Transmission and Processing. Gulf Professional Publishing 672, 2006.
- Rahmanian, N.; Ilias, I.; Nasrifar, K. *Process simulation and assessment of a back-up condensate stabilization unit.* Journal of Natural Gas Science and Engineering 26, 730-736, 2015.
- ✓ Rahmanian, N. et al. Simultation and optimization of a condensate stabilization process. Journal of Natural Gas Science and Engineering 32, 453-464, 2016.

#### 2nd International Conference and Expo on



October 27-28, 2016 Rome, Italy

