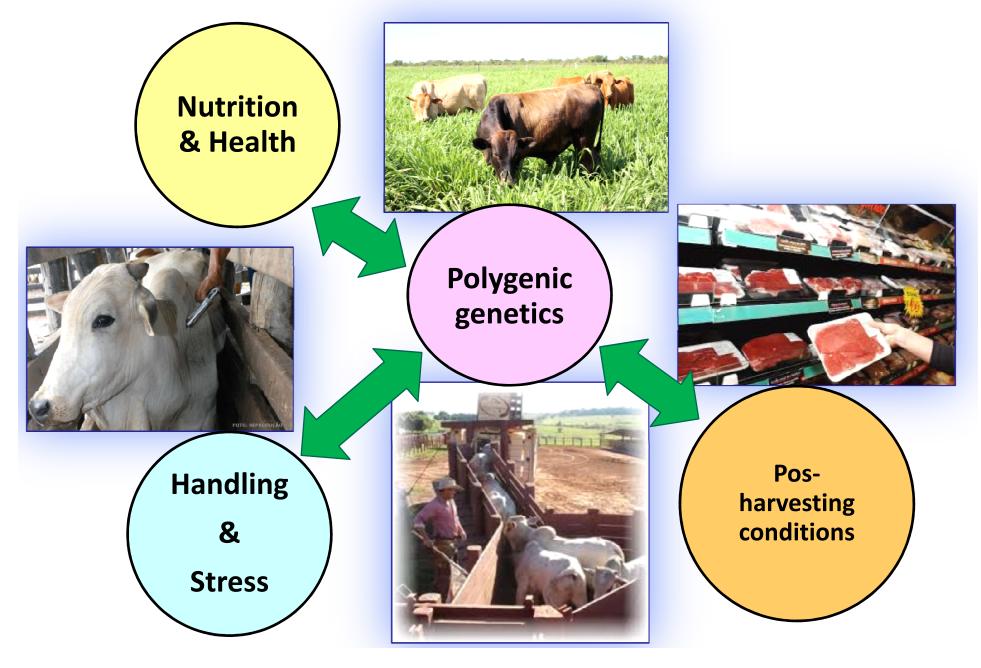
5th Euro-Global Summit and Expo on Food & Beverages

June 16-18, 2015 Alicante, Spain

Luciana C. A. Regitano

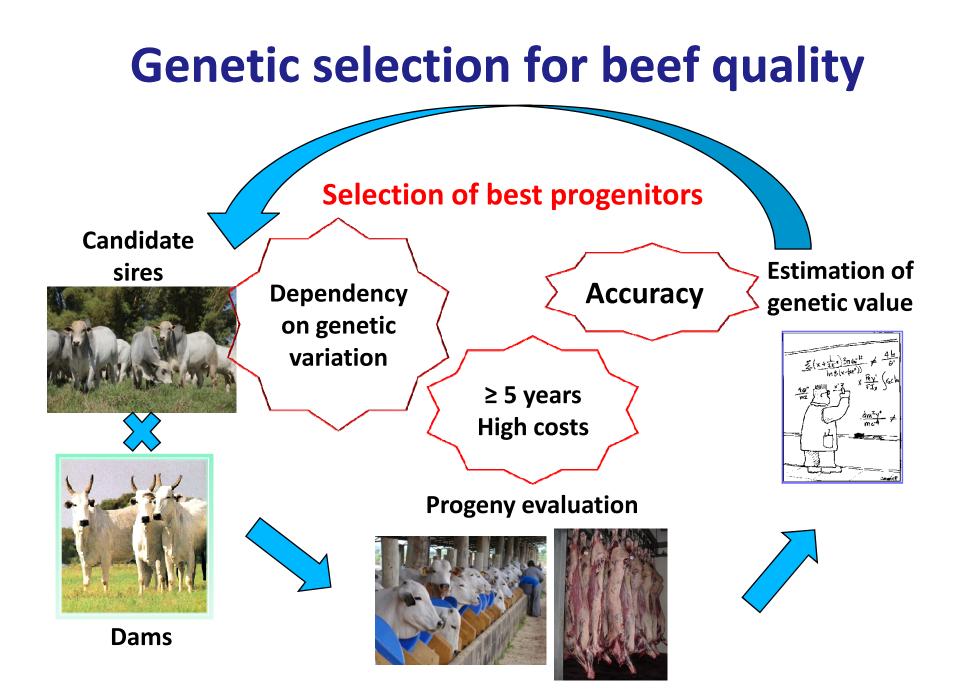
June 16-18, 2015 Alicante, Spain


"Beef quality" represents a variety of attributes

Objective factors, as the ratio fat/protein, fatty acids profile, mineral content...

Subjective factors, related to palatability

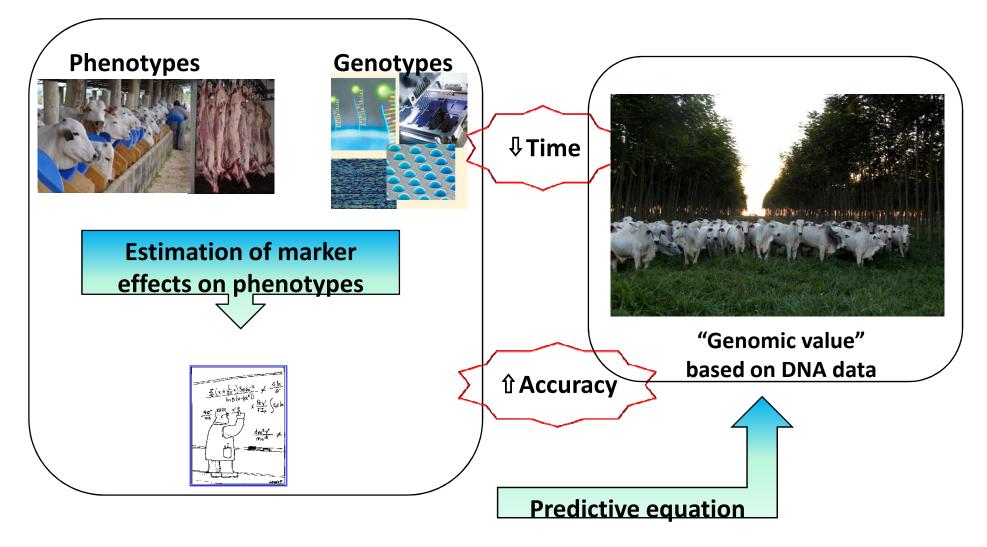
Beef quality traits are multifactorial

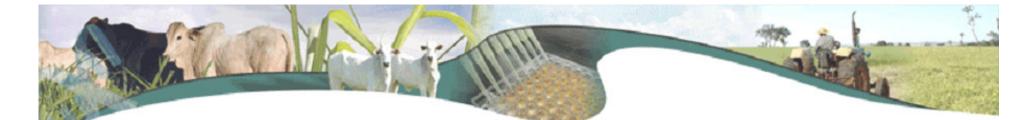


June 16-18, 2015 Alicante, Spain

Is it possible to explore genetic variation to produce a better

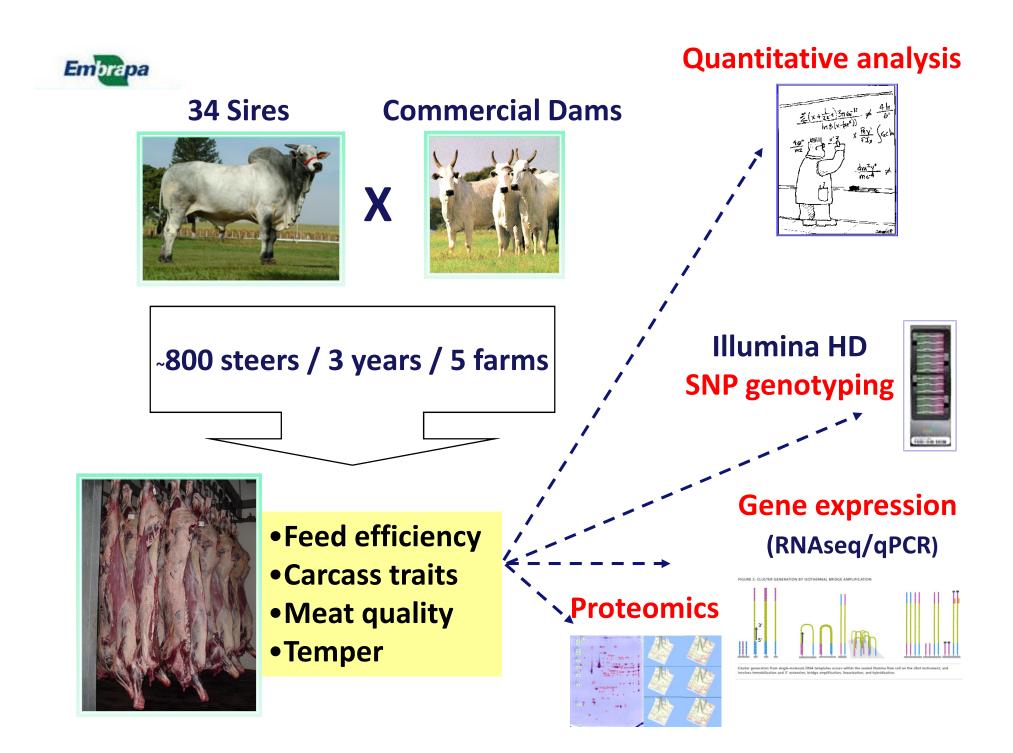
beef?



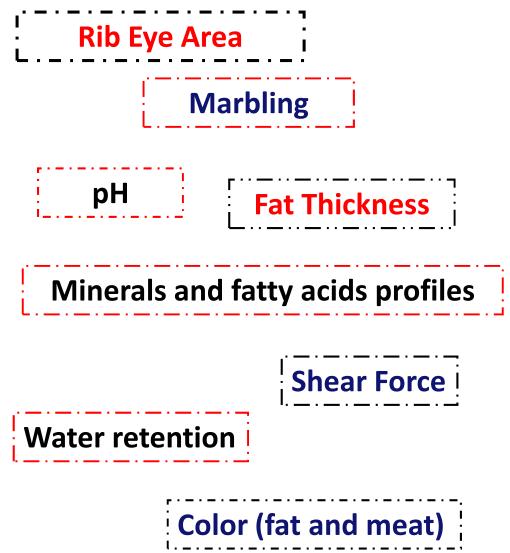


How could genomics help?

Training population


Breeding population

Embrapa's experience



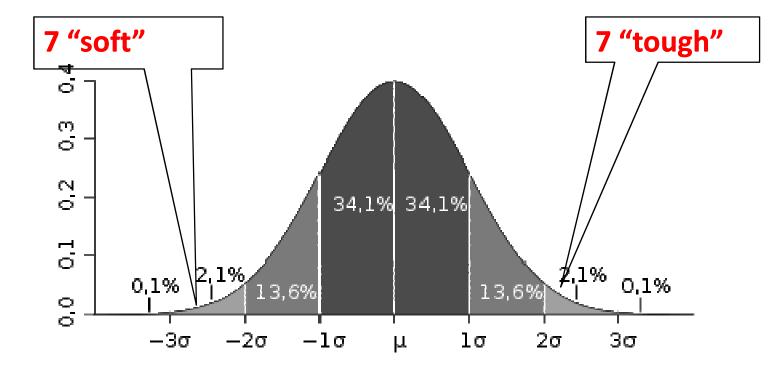
Beef quality traits

5th Euro-Global Summit and Expo on Food & Beverages

June 16-18, 2015 Alicante, Spain

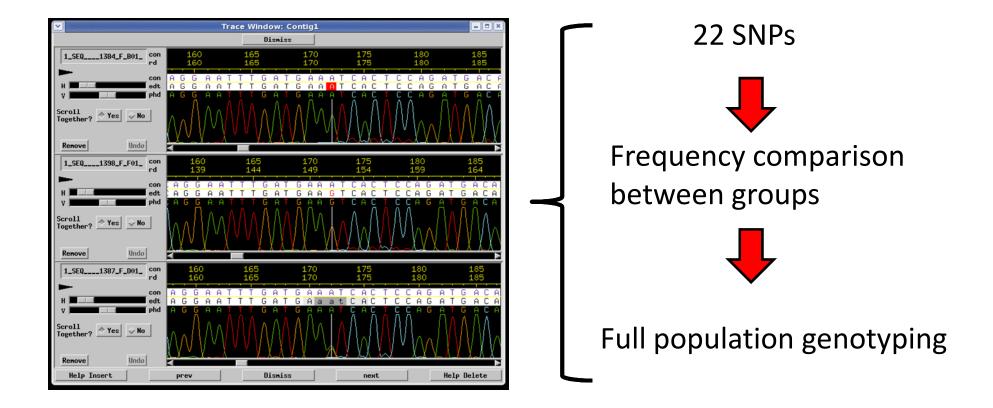
Tenderness

The major atribute for consumer's choice


KCNJ11 - Potassium inwardly rectifying channel, subfamily J, member 11

Rat model gene for diabetes

- Rat knockouts¹
 - Reduced glicogen and body fat deposits
 - –Lower muscle strenght
- In bovine: Maps to a tenderness QTL


¹Alekseev et al. Cell Metabolism, 11: 58-69, 2010

Searching for variation in Nelore's KCNJ11 gene

Extreme phenotype sampling

Sanger sequencing

Identification of *KCNJ11* as a functional candidate gene for bovine meat tenderness

Polyana C. Tizioto,¹ Gustavo Gasparin,² Marcela M. Souza,¹ Mauricio A. Mudadu,³ Luiz L. Coutinho,² Gerson B. Mourão,² Patricia Tholon,³ Sarah L. C. Meirelles,⁴ Rymer R. Tullio,³ Antônio N. Rosa,⁵ Maurício M. Alencar,³ Sérgio R. Medeiros,⁵ Fabiane Siqueira,⁵ Gelson L. D. Feijó,⁵ Renata T. Nassu,³ and Luciana C. A. Regitano³

Table 6. Summary of the results of the mixed-model analysis of association among WBSF measures in Nelore and two polymorphisms in KCNJ11 gene

WBSF	п	SNP1526 C>T				SNP2342T>C			
		Gen.	LS Means ±SE, kg/f	Add.	Dom.	Gen.	LS Means ± SE, kg/f	Add.	Dom.
0	461			ns	ns			0.3885	ns
		CC	8.86 ± 0.15			CC	9.14 ± 0.14		
		CT	8.72 ± 0.14			CT	8.70 ± 0.14		
		TT	9.40 ± 0.51			TT	8.75 ± 0.16		
7	423			ns	ns			0.3778	ns
		CC	5.38 ± 0.13			CC	5.50 ± 0.13		
		CT	5.46 ± 0.13			CT	5.51 ± 0.13		
		TT	5.69 ± 0.50			TT	5.12 ± 0.15		
14	434			ns	ns			ns	ns
		CC	4.33 ± 0.11			CC	4.35 ± 0.11		
		CT	4.49 ± 0.11			CT	4.54 ± 0.11		
		TT	4.57 ± 0.43			TT	4.26 ± 0.13		

WBSF measured at 24 h after slaughter = 0; measured at 7 days of aging = 7; measured at 14 days of aging = 14) n, Number of observations; Gen., genotype; LS Means \pm SE, least square means adjusted by the model \pm SE; Add., additive effect (kg/f); Dom., dominance deviation effect; ns, not significant ($P \le 0.05$).

Identification of *KCNJ11* as a functional candidate gene for bovine meat tenderness

Polyana C. Tizioto,¹ Gustavo Gasparin,² Marcela M. Souza,¹ Mauricio A. Mudadu,³ Luiz L. Coutinho,² Gerson B. Mourão,² Patricia Tholon,³ Sarah L. C. Meirelles,⁴ Rymer R. Tullio,³ Antônio N. Rosa,⁵ Maurício M. Alencar,³ Sérgio R. Medeiros,⁵ Fabiane Siqueira,⁵ Gelson L. D. Feijó,⁵ Renata T. Nassu,³ and Luciana C. A. Regitano³

Table 7. Effect of the muscular expression level (Ct) of KCNJ11 gene on the WBSF measures in 137 Nelore steers

WBSF	Estimated Effect, kg ± SE	<i>P</i> Value
0	-0.07868 ± 0.066	0.2403
7	-0.1627 ± 0.068	0.0187*
14	-0.03891 ± 0.056	0.4877

 $*P \le 0.05.$

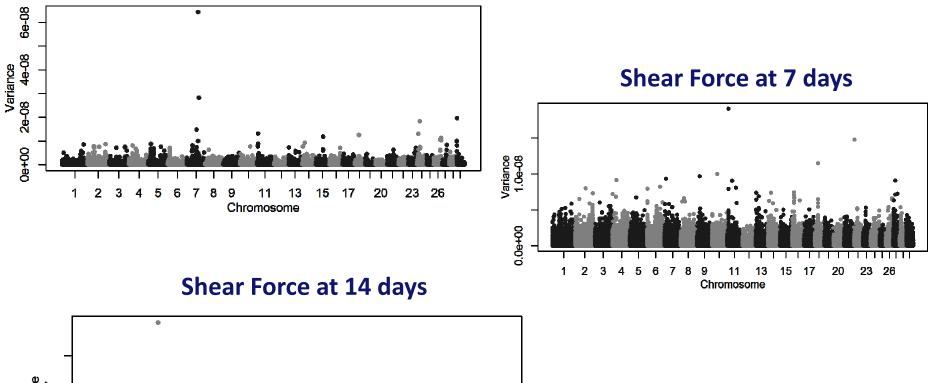
As from the mouse model \rightarrow Lower gene expression = "softer" meat

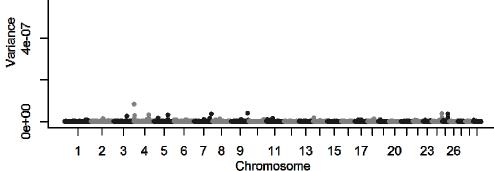
Genome wide association

Physiol Genomics 45: 1012–1020, 2013.First published September 10, 2013; doi:10.1152/physiolgenomics.00066.2013.

CALL FOR PAPERS | Updates on Mapping Quantitative Trait Loci

Genome scan for meat quality traits in Nelore beef cattle


P. C. Tizioto,^{1,2} J. E. Decker,² J. F. Taylor,² R. D. Schnabel,² M. A. Mudadu,³ F. L. Silva,⁴ G. B. Mourão,⁴ L. L. Coutinho,⁴ P. Tholon,³ T. S. Sonstegard,⁵ A. N. Rosa,⁶ M. M. Alencar,³ R. R. Tullio,³ S. R. Medeiros,⁶ R. T. Nassu,³ G. L. D. Feijó,⁶ L. O. C. Silva,⁶ R. A. Torres,⁶ F. Siqueira,⁶ R. H. Higa,⁷ and L. C. A. Regitano³


¹Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil; ²Division of Animal Sciences, University of Missouri, Columbia, Missouri; ³Brazilian Agricultural Research Corporation (Embrapa) Pecuária Sudeste, São Carlos, São Paulo, Brazil; ⁴Departamento de Zootecnia, Universidade de São Paulo/Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil; ⁵Agricultural Research Service, United States Department of Agriculture (USDA), Beltsville, Maryland; ⁶Embrapa Gado de Corte, Campo Grande, Mato Grosso do Sul, Brazil; and ⁷Embrapa Informática Agropecuária, Campinas, São Paulo, Brazil

Submitted 1 May 2013; accepted in final form 3 September 2013

Shear force at different aging times

Shear Force at 24 hs

June 16-18, 2015 Alicante, Spain

What about

Fat and Fatty acids

profiles?

GWAS – Fat

Cesar et al. BMC Genetics 2014, **15**:39 http://www.biomedcentral.com/1471-2156/15/39

RESEARCH ARTICLE

Open Access

Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle

Aline SM Cesar¹, Luciana CA Regitano², Gerson B Mourão¹, Rymer R Tullio², Dante PD Lanna¹, Renata T Nassu², Maurício A Mudado², Priscila SN Oliveira³, Michele L do Nascimento¹, Amália S Chaves¹, Maurício M Alencar², Tad S Sonstegard⁴, Dorian J Garrick⁵, James M Reecy⁵ and Luiz L Coutinho^{1*}

Table 1 Descriptive statistics, variance components and heritability by GBLUP for IMF deposition and composition in Nellore

Trait	Terminology ¹	Ν	Mean ± SE ²	Genetic variance	Residual variance	Total varian	here $h^2 \pm SE$
IMF (%)	Intramuscular fat	382	2.77 ± 0.05	0.196	0.490	0.686	0.29 ± 0.16
			- 0 07 - 0 001 -	- 000020	0.00070	0.000781	

Lean beef every day is effective in lowering total and LDL "bad" cholesterol (DASH, Dietary Approaches to Stop Hypertension).

C18:0	Stearic acid	378	14.98 ± 0.14	1.3380	5.348	6.686	0.20 ± 0.12
C18:1 cis-9	Oleic acid	378	37.46 ± 0.22	2.0720	10.826	12.898	0.16 ± 0.11

C18:0 (stearic acid)=== > humans convert to oleic acid, the main monounsaturated fatty acid in olive oil, associated with several health benefits

³MUFA, PUFA and SFA were the total of all monounsaturated, polyunsaturated and saturated fatty acids, respectively.

⁴n-3 and n-6 were total of omega 3 and 6 fatty acids.

 5 Atherogenic index = [12:0 + 4(14:0) + 16:0]/(SFA + PUFA).

IUPAC Compendium of Chemical Terminology.

²SE Standard error.

RESEARCH ARTICLE

Putative Regulatory Factors Associated with Intramuscular Fat Content

Aline S. M. Cesar¹, Luciana C. A. Regitano², James E. Koltes³, Eric R. Fritz-Waters³, Dante P. D. Lanna¹, Gustavo Gasparin¹, Gerson B. Mourão¹, Priscila S. N. Oliveira⁴, James M. Reecy³, Luiz L. Coutinho¹*

RNA-Sequencing: High vs Low IMF

77 Differentially Expressed Genes (FDR 10%)

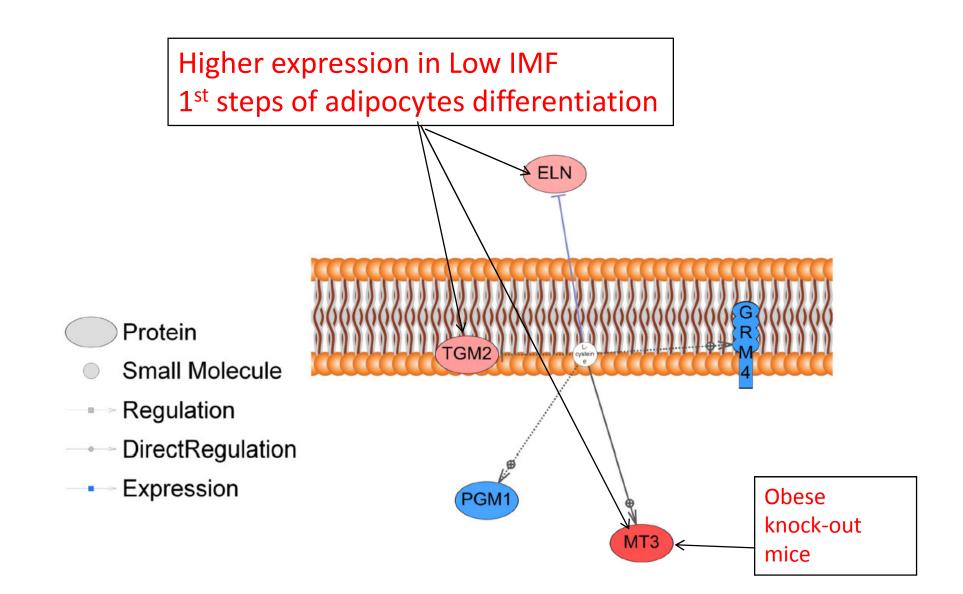


Fig. 1- L-cysteine pathway genes identified as differentially expressed between High and Low IMF

Minerals

They are fundamental in metabolism regulation, including muscle function and energy utilization.

Would genetic variation be expected in normal animals?

Genetic parameters for concentrations of minerals in longissimus muscle and their associations with palatability traits in Angus cattle¹

R. G. Mateescu,*² A. J. Garmyn,* R. G. Tait Jr.,† Q. Duan,† Q. Liu,‡ M. S. Mayes,† D. J. Garrick,† A. L. Van Eenennaam,§ D. L. VanOverbeke,* G. G. Hilton,* D. C. Beitz,†‡ and J. M. Reecy†

*Department of Animal Science, Oklahoma State U University, Ames 50011; ‡Department of Biochen 50011; and §Department of An

Iron-deficiency anemia is still the main public health problem and reaches 30% of world population

Table 5. Genetic (σ^2 a) and residual (σ^2 e) calcium, copper, iron, magnesium, man

(World Health Organization, 2015)

concentrations (μ g/g muscle) in LM from Angus cattle obtained by single trait R/EML analysis.

Trait ¹	σ^2_{a}	σ_{e}^{2}	$h^2 \pm SE$
Calcium	0.00003	277.74	$0.000 \neq 0.03$
Copper	0.00025	0.49	0.000 ⊭ 0.04
Iron	3.69	3.09	0.544 ± 0.09
Magnesium	36.78	530.83	0.065 ± 0.04
Manganese	0.00006	0.007	0.009 ± 0.03
Phosphorus	1,105.10	29,630.5	0.036 ± 0.03
Potassium	3,989.63	104,989.0	0.037 ± 0.03
Sodium	591.32	2574.71	0.187 ± 0.06
Zinc	4.73	47.10	0.091 ± 0.04

N= 2.825 Angus

Genome-wide association study of concentrations of iron and other minerals in longissimus muscle of Angus cattle¹

R. G. Mateescu,*² D. J. Garrick,[†] R. G. Tait Jr.,[†] A. J. Garmyn,* Q. Duan,[‡] Q. Liu,[§] M. S. Mayes,[†] A. L. Van Eenennaam,[#] D. L. VanOverbeke,* G. G. Hilton,* D. C. Beitz,[†]§ and J. M. Reecy[†]

*Department of Animal Science, Oklahoma State University, Stillwater 74078; †Department of Animal Science, Iowa State University, Ames 50011; ‡Department of Genetics, University of North Carolina, Chapel Hill 27599; §Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011; and #Department of Animal Science, University of California, Davis 95616

Iron

- ✓ Seven regions in six chromossomes (1, 2, 7, 10, 15 e 28)
- ✓ Explained phenotypic variance = 0.37, $h^2 = 0.48$
- ✓ **BTA 1 (9 Mb)** *TFR1* (*Transferrin receptor 1 gene*)
- ✓ BTA2

SLC11A1 (Solute Carrier Family 11)

ABCB6 (ATP-Binding Cassette, Sub-Family B (MDR/TAP), Member 6)

Tizioto et al. Genetics Selection Evolution (2015) 47:15 DOI 10.1186/s12711-014-0083-3

RESEARCH

Open Access

Detection of quantitative trait loci for mineral content of Nelore *longissimus dorsi* muscle

Polyana C Tizioto^{1,2}, Jeremy F Taylor², Jared E Decker², Caio F Gromboni³, Mauricio A Mudadu⁴, Robert D Schnabel², Luiz L Coutinho⁵, Gerson B Mourão⁵, Priscila SN Oliveira¹, Marcela M Souza¹, James M Reecy⁷, Renata T Nassu⁴, Flavia A Bressani⁴, Patricia Tholon⁴, Tad S Sonstegard⁶, Mauricio M Alencar⁴, Rymer R Tullio⁴, Ana RA Nogueira⁴ and Luciana CA Regitano^{4*}

- \checkmark Mineral contents are moderatelly inherited (h² = 0.29 to 0.36)
- ✓ Several small effect QTLs
- ✓ Large effect region for iron in BTA 12 (72 Mb):

6.5% of aditive genetic variation of [Fe]

ATP-binding cassette genes

June 16-18, 2015 Alicante, Spain

Final considerations

Genomic analysis is able to depict genetic variation for beef quality traits, and can be a good alternative to improve beef quality.

June 16-18, 2015 Alicante, Spain

Final considerations

Will industry pay for quality?

UNIVERSITY OF WISCONSIN-MADISON

1 1 11 Thank you! luciana.regitano@embrapa.br Embrapa Southeast Cattle