INTRODUCTION

- Laguna Lake, a vital and dynamic natural resource
- Anthropogenic pressures
 - West industries and residential areas
 - East— agricultural land uses

INTRODUCTION

Whitegoby Glossogobius giuris

- Declining native fish production
- Few studies on contamination magnitude in Laguna Lake using fish species
- Increasing demand on useful tools in biomonitoring

INTRODUCTION

Stress → reduced efficient use of energy → decreased developmental stability of individuals (Møller, 1997; Escos *et al.*, 2000)

- Fluctuating asymmetry subtle differences between left and right sides of bilateral traits (Palmer and Strobeck, 2003)
 - potential biomarker of stress within populations

Without Want to a stand

Fish Collection

Linear Morphometrics

Morphometric characters: caudal peduncle depth (CPD), body depth at pelvic fin origin (BDPF), body depth at anal fin origin (BDAF), pectoral fin length (PFL), pectoral fin width (PFW) (Source: Corpuz *et al.*, 2013; Vedra *et al.*, 2013)

Characters of *G.* **giuris assessed for FA:** a) **morphometric** (head length (HL), head depth (HD), jaw length (JL), pre-orbital length (PrOL), post-orbital length (PoOL), opercular length (OL), opercular width (OW); b) **meristic** (pectoral fin rays (PFR), lateral line scales (LLS), transverse scales (TS), caudal peduncle scale row (CPSR) (Source: Corpuz *et al.*, 2013; Vedra *et al.*, 2013)

FA Analyses

- methods of Palmer (1994), Wilkins *et al.* (1995), Leung *et al.* (2000), Fessehaye *et al.* (2007), Muallil *et al.* (2014)
- One sample t-test test for directional asymmetry (DA)
 - p value < or = 0.05 (excluded in the analysis)
- Kurtosis function test for antisymmetry (AS)
 - kurtosis, platykurtic (excluded in the analysis)

FA Indices for FA level comparison

- ✤ FA1 = | *R L* |
- ♦ FA2 = |R L| / (R + L) / 2
 - ✓ positive correlation between FA and character size exists

$$\Leftrightarrow \text{ CFA1} = \left| \text{ FA}_{ij} \right| \ j = 1 \text{ to } k$$

 summation of absolute FA values across traits (j) for each individual (i)

• CFA2=
$$|FA_{ij}|/avg|FA_j|_j = 1$$
 to k

summation of standardized absolute FA values

Morphometric characters exhibiting FA in reference population (N=31)

Character	r	р	FA index	Mean <u>+</u> SD
CPD	0.331	0.069	FA1	0.136 <u>+</u> 0.269 ^b
OL	0.362*	0.045	FA2	0.020 <u>+</u> 0.011

based on series of tests (Shapiro-Wilk test, ttest, kurtosis); Shapiro-Wilk test: <0.05, normally distributed

Captive condition / artificial environmental condition → restrictions to ecological requirements, lack of natural stimuli

Morphometric characters exhibiting FA in wild populations

Character	r	р	FA index	Mean <u>+</u> SD
Bay (N=38)	0.001	0.000		1 010 0 916
	0.001	0.996	FAI	1.019 <u>+</u> 0.816
CPD	-0.059	0.731	FA1	0.366 <u>+</u> 0.350 ^a
PFW	0.045	0.795	FA1	0.549 <u>+</u> 0.370
ED	0.025	0.884	FA1	0.326 <u>+</u> 0.220
OW	0.219	0.200	FA1	0.719 <u>+</u> 0.507
Santa Cruz (N=42)				
CPD	0.234	0.075	FA1	0.419 <u>+</u> 0.359ª
PFW	0.069	0.661	FA1	0.424 <u>+</u> 0.352
BDPF	0.263	0.088	FA1	0.746 <u>+</u> 0.676
OW	0.292	0.057	FA1	0.879 <u>+</u> 0.652

Meristic characters exhibiting FA

Character	r	р	FA index	Mean <u>+</u> SD	
Reference (N=31)					
PFR	0.022	0.905	FA1	0.903 <u>+</u> 0.296ª	
Bay (N=38)					
LLS	-0.138	0.421	FA1	0.639 <u>+</u> 0.585	
PFR	0.039	0.821	FA1	1.056 <u>+</u> 0.575ª	
Santa Cruz (N=42					
TS	0.054	0.732	FA1	0.512 <u>+</u> 0.499	
PFR	-0.209	0.178	FA1	0.884 <u>+</u> 0.579 ^a	

Comparison of FA in *G. giuris* populations from three sites for each character and across all characters

Character (FA index)	Ν	df	MS	F	Р	Rank
CPD (FA1)	110	2	.770	6.661**	.002	Santa Cruz ^a >Bay ^a >Reference ^b
PFR (FA1)	110	2	.328	1.209 ^{ns}	.303	Bay ^a >Reference ^a >Santa Cruz ^a
PFW (FA1)	79	77	-	.329 ^{ns}	.137	Bay ^a >Santa Cruz ^a
OW (FA1)	79	77	-	1.359	.245	Santa Cruz ^a >Bay ^a
CFA1	110	2	118.597	77.427**	.000	Bay ^a >Santa Cruz ^b >Reference ^c
CFA2	110	2	142.786	29.878**	.000	Bay ^a >Santa Cruz ^a >Reference ^b

CONCLUSION

- FA may indicate the decreased developmental stability in populations in the face of stressors and to perceive changes in the surrounding environment
 - ✓ artificial environmental condition in the reference site
 - ✓ presence of anticholinesterase pesticides in the agricultural sites

RECOMMENDATIONS

- Investigate on G. giuris populations from the other bays and tributaries surrounding the lake for an overall assessment on the status of this fishery resource
- Increase number of samples and include seasonal variation

ACKNOWLEDGMENT

ASTHRDP-NSC, Department of Science and Technology – Science Education Institute (DOST-SEI), Philippines

