8th Euro Biotechnology Congress-2015

Systems metabolic engineering of *Bacillus subtilis* for efficient *N*-acetylglucosamine production

Long Liu Jiangnan University

Structure and physiological function of glucosamine(GlcN)

- GlcN is derived from substitution of a hydroxyl group of ^{HO}
 glucose molecule with an amino group
- GlcN and its derivatives GlcNAc are important compounds in cartilage cells and joint tissue.
- Clinical trials with GlcN for treatment demonstrate that GlcN is necessary to repair and maintain healthy cartilage and joint function.
- The global GlcN/GlcNAc market is estimated to reach 20,000 tons in 2017 (about 5 billion USD)

Production methods of GlcN and GlcNAc

- Acidic hydrolysis of Chitin
- Enzymatic hydrolysis of Chitin
- Microbial fermentation

Acidic hydrolysis of chitin

- Quantities of acid and base are needed, which cause severe pollution and are harmful for equipment
- Heavy metal pollution
- Sophisticated purification process
- Potential allergy effects

Enzymatic hydrolysis of chitin

Long reaction time and low productivity

•Both of the two enzymes are needed for enzymatic hydrolysis

Microbial fermentation for GlcN/GlcNAc production

- Short fermentation period and high productivity
- No limitation by raw material supply
- Environmentally friendly
- No allergy effects

Systems engineering of B. subtilis for GlcNAc production

Advantages of B. subtilis as host

- Generally regarded as safe (GRAS)
- One of the most-well characterized gram-positive microorganisms
- There are wide arrays of tools available
- Not posing a phage infection problem during industrial production

Strategies for construction of GlcNAc overproducing B. subtilis

- Overexpression of GlmS and GNA: two key enzymes
- Knockout of *nagP*, *nagA*, *nagB* and *gamA* genes
- Directed evolution of GlmS and GNA1
- Blocking acidic by-products accumulation
- Expression of anti-pfk and antiglmM sRNAs
- Respiration chain engineering
- Flux balance analysis and byproducts deletion

Engineering GlcNAc pathway—overexpression of glmS and GNA1

Metabolic pathway of GlcNAc

Accumulation of GlcN and GlcNAc was realized by overexpression of GlmS and GNA1 (230 mg/L), but GlcN and GlcNAc decreased due to catabolic reactions.

Engineering GlcNAc pathway—*nagP* gene knockout

Knockout of *nagP* blocked extracellular importation, which facilitated GlcNAc accumulation, and GlcNAc titer reached 620 mg/L

Engineering GlcNAc pathway—*nagA, nagB* and *gamA* knockout

By further blocking intracellular GlcANc catabolic pathway, GlcNAc titer was increased to 1.8 g/L, which was 17-fold higher than that of control.

Directed evolution of GlmS for improvement of catalytic efficiency

Directed evolution of GNA1 for improvement of catalytic efficiency

The salt bridges of GNA1 mutant

Engineering GlcNAc network—two promoter system for expression of GNA1 and GlmS

Based on two promoter system for expression of GNA1 and GlmS, GlcNAc titer reached 2.51 g/L, increased by 30%.

Engineering GlcNAc network—Blocking formation of lactate and acetate

After blockage of lactate and acetate formation, GlcNAc titer reached 4.5 g/L and 5.2 g/L, respectively, which was 2-fold higher compared with strain without blocking acidic by-products formation.

Engineering GlcNAc network—**construction of synthetic sRNA**

- Expressing anti-*pfk* sRNA controlled activity of glycolysis module at medium level (60%)
- Expressing anti-glmM sRNA controlled activity of peptidoglycan module at medium level (60%)
- Co-overexpressing anti-*pfk* sRNA, anti-*glmM* sRNA, and Hfq controlled activities of glycolysis peptidoglycan module at low level (30%)

sRNA can effectively control competitive pathway of GlcNAc synthesis (glycolysis module and peptidoglycan module).

Engineering GlcNAc network—sRNA-based modular pathway engineering

GlcNAc titer reached 8.30 g/L with yield on cell 2.00 g/g DCW by assembly and optimization of various modules via a module engineering approach.

Physiology property optimization—Blocking sporulation and respiration chain engineering

Further respiration chain engineering, knockout of *cydAB* gene, blocked the inefficient respiratory chain and diverted the electron flux through a more efficient respiratory chain. GlcNAc titer was further enhanced to 9.5 g/L.

Batch and fed-batch fermentation in a 3 L bioreactor

In fed-batch culture, GlcNAc titer reached 31.65 g/L with specific production rate 0.054 g/g DCW/h and productivity 0.63 g/L/h.

Blocking by-product acetoin formation

Flux balance analysis of key metabolic nodes

Effect of blocking acetoin formation on GlcNAc production

	B6GECG	B6∆alsSD 1	B6∆alsSD 2
Glucose consumption (g/L)	313	260	240
GlcNAc titer (g/L)	31.16	41.77	41.41
Dry cell weight (g/L)	23.38	27.65	27.33
GlcNAc productivity (g/L h)	0.433	0.847	0.858
Yield on glucose (%)	9.95	16.06	17.25

Related publications

- **Zhu et al.**, *Bioresource Technology*. 2015. 177: 387-392.
- Liu et al., *Applied Microbiology and Biotechnology*. 2015. 99: 1109-1118.
- Liu et al., *Metabolic Engineering*. 2014. 23: 42-52
- Liu et al., *Metabolic Engineering*. 2014. 24: 61-69.
- Liu et al., *Metabolic Engineering*. 2013. 19: 107-115.
- Liu et al., *Applied Microbiology and Biotechnology*. 2013. 97: 6149-6158.
- Liu et al., *Applied Microbiology and Biotechnology*. 2013. 97: 6113-6127.

Thanks for your attention.