Correlations between thrombotic and non-thrombotic APS manifestations Lesions from the Serbian National Registry

Ljudmila Stojanovich

"Bezanijska Kosa", University Medical Center, Belgrade, Serbia

ANTIPHOSPHOLIPID SYNDROME

Very frequent Sy:

✓ 1 / 5 YOUNG WITH CVI
 ✓ 1 / 5 DVT
 ✓ 1 / 5 PREGNANCY LOSS

Factors Predicting Autoimmune Diseases

The Mosaic of Autoimmunity

Hormonal and Environmental Factors Involved in Autoim Diseases – 2008

Yehuda Shoenfeld MD¹, Gisele Zandman-Goddard MD², Ljudmila Stojanovich MD³, Maurizio Howard Amital MD⁵, Yair Levy MD⁶, Mahmoud Abu-Shakra MD⁷, Ori Barzilai MD¹, Yackov Be Miri Blank PhD⁹, Joselio Freire de Carvalho MD¹⁰, Andrea Doria MD¹¹, Boris Gilburd PhD⁹, Uri Ilan Krause MD¹², Pnina Langevitz PhD¹³, Hedi Orbach MD¹⁴, Vitor Pordeus MD¹⁵, Maya Ram⁵ Elias Toubi MD¹⁶ and Yaniv Sherer MD¹

Changeable factors

- Psychological stress
- Infection
- Vaccination
- Smoking
- Obesity
- Ultraviolet light exposure
- Drugs...

Unchangeable factors

- Genetic
- Hormonal
- Immune deficiency state
- Gender

Autoimmunity Reviews 9 (2010) A271-A276

Available online at www.sciencedirect.com

Stress as a trigger of autoimmune disease

Ljudmila Stojanovich*, Dragomir Marisavljevich "Bezhanijska Kosa" University Medical Center. Belgrade University. Serbia

Sapporo Criteria on Antiphospholipid Syndrome (1998)

Clinical criteria

- ✓ Vascular thrombosis
- ✓ Pregnancy morbidity

- Laboratory criteria
- ✓ Lupus anticoagulant
- ✓ Anticardiolipin antibody
 - dependent of β_2 -GPI

Project Issued by the Ministry of Science of the Republic of Serbia

Issued by the Ministry of Science of the Republic of Serbia:

• Grant number 145020 for 2006-2010:

Multi-disciplinary Study of Risk Factors for the Development of Thromboses in APS

• Grant number 175041 for 2011-2014:

Multidisciplinary study of genetic and acquired abnormalities of the immune response for the occurrence of systemic antiphospholipid syndrome manifestations.

Research Goal

- 1. To determine prevalence and types of aPL titer (LA, ACL, β 2GPI) in patients with thrombotic and non-thrombotic manifestations of the disease.
- 2. Analisys of gene polymorphisms that are important for the T (H) 17 and regulatory T cells differentiation in APS patients, and their corellation with the disease.
- 3. Determination of aPL association with the innate Thrombophilia (defficiency of AT, PC, PS, FXII, polymorphisms FV Leiden, prothrombin 20210 and MTHFR) and clinical expression.
- 4. Determination of aPL role in the development of induced atherosclerosis, including subclinical forms of the disease using the latest technology methods such as multi sliced computed tomography (64 MSCT), which would present the extent and location of changes in blood vessels.
- 5. To determine the importance of oxidative stress, markers of inflammation, endothelial adhesion receptor molecules induction and activation, as additional factors in the complicated pathophysiology and multifactorial etiology of APS thrombosis.
- 6. To continue in obtaining the national APS patients registry with the possibilities of its participating in international studies.
- 7. To overview the patient outcomes with various APS therapeutic protocols.

- Aim of this study was to observe and investigate association between thrombotic and non-criteria manifestations, in prospective study of APS patients.
- Differences between patients with primary and secondary APS were also analyzed.
- This study presents the first results from our national cohort.

Patient Group Description

501/383 patients:

358/ 260 PAPS patients:

- 201 female and 59 male
- mean age 45.2 + 13.7 years

143/ 114 SLE patients with secondary APS

- 106 female and 9 male
- mean age 46.9 + 15.9 y

14 (4.5%) patients with CAPS: 7 SLE+ 7 PAPS

Distribution of aPL in PAPS and SAPS

Table 2. Distribution of aPL in the PAPS and SAPS groups

aPL type/ aPLcategory	PAPS (N=260)	SAPS (N=114)	p value
aCL IgG	95 (36.5)	68 (59.6)	0.0001
aCL IgM	141 (54.2)	73 (64.0)	0.049
₿₂GPI IgG	83 (31.9)	49 (43.0)	0.027
ß ₂ GPI IgM	98 (37.7)	51 (44.7)	0.122
LA	133 (51.2)	56 (49.1)	0.402
	160 (61.5)	81 (71.1)	
lla	41 (15.8)	5 (4.4)	
llb	46 (17.7)	23 (20.2)	p=0.020
llc	13 (5.0)	5 (4.4)	

Legend: PAPS= primary antiphospholipid syndrome, SAPS= secondary antiphospholipid syndrome, aCL= anticardiolipin antibodies, GPI=anti- β₂ glycoprotein I antibodies, LA= lupus anticoagulant, aPL= antiphospholipid antibodies Categories: I-more than one aPL present, IIa LA present alone, IIb-aCL present alone, IIc- anti-β2GPI present alone

Distribution of patients according to antibody category

More than one type of antibodies (category I) was present in 64.5%
Lupus anticoagulant was present alone in 12.1% patients (category IIa)
aCL antibodies were present alone in 16% patients (category IIb)
anti-β2GPI antibodies were present alone in 7.4% patients (category IIc)

PengoV et al. Antibody profiles for the diagnosis of APS. Thromb Haemost 2005

Results APS Manifestations

✓ Pregnancy loss: 41% pts

✓ Venous thrombosis: 28% pts

✓ Arterial thrombosis: 51% pts

Diagnostic of vascular APS manifestations

Lupus (2014) 0, 1-5 http://lup.sagepub.com

REVIEW

Tomography and blood vessels in Hughes syndrome

L Stojanovich and A Djokovic Internal Medicine, "Bezanijska Kosa," University Medical Center, Belgrade, Serbia

- Physical examination
- X-ray diagnosis of chest
- Vascular ultrasonography (Doppler)
- Peripheral angiography
- Vascular magnetic resonance imaging/ MRA angiography
- Computed tomographic angiography (CTA)
- 64-multi slice CT whole body angiography can allow us excellent visualization of all major and minor blood vessels

Autoimmunity keviews 10 (2011) 233-237

Jovica Saponjski ^{*,1}, Ljudmila Stojanovich ¹, A. Djokovic, M. Petkovic, D. Mrda Internal medicine, "Bezanijska Kosa", University Medical Center, Belgrade, Serbia

Thrombosis

Thrombosis was diagnosed:

✓ 83 (51.2%) PAPS patients
 ✓ 36 (38.3%) SLE patients

p = 0.045

✓ Arterial Thrombosis : 51% pts

✓ Venous thrombosis: 28% pts

Arterial Thrombosis

✓ 35% PAPS patients

✓ 34% SLE patients

p = 0.932

Venous thrombosis

✓ 25.9% PAPS patients

✓ 8.5% SLE patients

p = 0.001

Incidence of thrombosis in APS pts in Serbia

There was a correlation between: CVI and:

pts with \$\mathcal{B}_2\$GPI-IgM

p=0.008

pts with LA

p=0.009

There was a correlation between: CVI and:

✓ pts with β_2 GPI p=0.008✓ pts with LA p=0.009

Analysis of aPL and localization of thrombosis

There was no correlation between:

other localization of arterial thrombosis and the type of aPL

p > 0.05

Analysis of aPL and localization of thrombosis

✓ aCL-IgM and cerebral venous sinus thrombosis

✓ aCL-IgM and jugular venous thrombosis

p= 0.040

Analysis of aPL and localization of thrombosis

There was no correlation between:

other localization of venous thrombosis and the type of aPL

p> 0.05

Distribution of arterial and venous thrombosis in PAPS and SAPS patients under and over 45 years of age

Age	PA	PS	Secondo	ary APS
	AT	VT	AT	VT
<45 years	17 (28.5%)	20 (24.15%)	14 (25.5%)	4 (7.3%)
>45 years	39 (49.2%)	22 (27.8%)	18 (46.2%)	4 (10.3%)
	p=0.028	p=0.238	p=0.031	p=0.439

Analysis of localization of thrombosis and age

Age was a significant risk factor for:

 CVI: 51.92 and 41.97 years, respectively p=0.001

MI: 56.6 and 43.6 years, respectively p=0.0001

Analysis of activity of SLE (SLEDAI) and thrombosis

The median SLEDAI score was 9 in patients without thrombosis.

The median SLEDAI score was 13.5 in patients with thrombosis. p=0.03

The activity of SLE was in significant correlation with the prevalence of thrombosis.

Distribution of aCL IgG/IgM levels in PAPS patients with arterial and venous thrombosis

PAPS		Level of aCL IgG				Level of aCL IgM		
	Low	medium	high	р	low	medium	high	р
Thrombosis %	50.0	65.2	46.7	0.520	60.6	56.3	37.9	0.069
АТ	33.3	52.2	26.7	0.253	45.1	28.1	25.9	0.095
VT	25.9	26.1	26.1	0.553	28.2	37.5	17.2	0.195

Distribution of aCL IgG/IgM levels in SAPS patients with arterial and venous thrombosis

Secondary APS	Level of aCL IgG				Secondary APS Lev				Le	vel of aCl	. IgM	
	low	medium	high	р	low	medium	high	Ρ				
Thrombosis %	29.8	37.5	51.6	0.256	26.7	35.5	51.5	0.094				
AT	25.5	37.5	45.2	0.298	26.7	25.8	48.5	0.119				
VT	4.3	0	19.4	0.054	6.7	12.9	6.1	0.484				
								_				
		Stoj	anovich L, I	MD, PhD								

Distribution of \$2GP1 IgG/IgM levels in patients with PAPS

PAPS	β2GPI-IgG				2GPI-:	IgGM		
	low	medium	high	P	low	mediu m	high	P
Thrombosis %	50.0	65.2	46.7	0.882	48.9	42.9	64.1	0.201
AT	33.3	52.2	26.7	0.898	30.9	28.6	48.7	0.088
VT	25.9	26.1	26.7	0.973	27.7	17.9	28.2	0.645

Distribution of ß2GP1 IgG/IgM levels in patients with SAPS

Secondary APS	β2GPI-IgG				β2GPI	-IgGM		
	low	medium	high	р	low	mediu m	high	p
Thrombosis %	32.7	33.3	50.0	0.270	42.6	33.3	34.8	0.275
AT	28.8	25.0	46.7	0.107	40.4	25	30.4	0.298
VT	9.6	8.3	6.7	0.952	8.5	12.5	4.3	0.324

Comparisons between Pulmonary Manifestations and Gender in PAFS

	Male N=54	Female N=159	p
Pulmonary embolism and infarction	18.5%	13.2%	0.464
Primary pulmonary hypertension	1.9%	1.3%	0.999
Secondary pulmonary hypertension	<u>13%</u>	3.2%	0.019*
Major pulmonary arterial thrombosis	3.7%	1.9%	0.814
Pulmonary microthrombosis	<u>24.1%</u>	13.3%	0.099
Acute respiratory distress syndrome	5.6%	1.3%	0.203

Available online at www.sciencedirect.com

Autoimmunity Reviews 5 (2006) 344-348

TOIMMUNIT

REVIEWS

www.elsevier.com/locate/autrev

Review

Pulmonary manifestations in antiphospholipid syndrome

Ljudmila Stojanovich *

Medical Center ''Bezhanijska Kosa'', Belgrade University, Department of Internal Medicine/Rheumatology, Belgrade 11080, Bezanijski put bb, Serbia

> Received 18 January 2006; accepted 6 February 2006 Available online 3 March 2006

Comparisons between Pulmonary Manifestations and Gender in SAFS

	Male N=13	Female N=99	Ρ
Pulmonary embolism and infarction	<u>15.4%</u>	7.1%	0.621
Primary pulmonary hypertension	0	0	/
Secondary pulmonary hypertension	0%	2%	0.999
Major pulmonary arterial thrombosis	0%	2%	0.999
Pulmonary microthrombosis	<u>23.1%</u>	6.1%	0.114
Acute respiratory distress syndrome	0%	3%	0.999

Scand J Rheumatol 2012;iFirst article:1-4

Pulmonary events in antiphospholipid syndrome: influence of antiphospholipid antibody type and levels

L Stojanovich¹, M Kontic², A Djokovic¹, N Ilijevski³, N Stanisavljevic¹, D Marisavljevic¹

¹Internal Medicine, 'Bezanijska Kosa', University Medical Centre, Belgrade, ²Pulmonology Clinic, Clinical Centre of Serbia, University in Belgrade, and ³Institute of Cardiovascular Disease 'Dedinje', Belgrade, Serbia

1

VASCULITIS AND VASCULOPATHY

Amputation of Digits or Limbs in Patients with Antiphospholipid Syndrome

Ronald A. Asherson, MD, FACP, FRCP,* Ricard Cervera, MD, PhD, FRCP,[†] Evandro Klumb, MD,[‡] Ljudmila Stojanovic, MD,[§] Piercarlo Sarzi-Puttini, MD,[¶] Janet Yinh, MD,[∥] Silvia Bucciarelli, MD, PhD,[†] Gerard Espinosa, MD, PhD,[†] Roger Levy, MD,** and Yehuda Shoenfeld, MD, FRCP^{††}

Digital gangrene/with amputations

Wrapping up

 Patients over 45 years of age were at a higher risk for arterial thrombosis, particularly for cerebral ischemic attack and myocardial infarction.

✓ The activity of SLE (SLEDAI) was in significant correlation with the prevalence of thrombosis.

Wrapping up

✓ The prevalence of thrombosis was similar in all antibody category groups. Any aPL level and type is risk factor for thrombotic event in ours APS patients.

 After 10 years follow-up, we observed no thrombotic manifestations in any patients with high aPL levels. All patients were treated according to international protocols

Lupus (2011) 0, 1-8

http://lup.sagepub.com

LUPUS AROUND THE WORLD

Influence of antiphospholipid antibody levels and type on thrombotic manifestations: results from the Serbian National Cohort Study

L Stojanovich¹, O Markovic¹, D Marisavljevic^{1,2}, I Elezovic^{3,2}, N Ilijevski^{4,2} and N Stanisavljevic¹ ¹Internal medicine, "Bezanijska Kosa", University Medical Center, Belgrade, Serbia; ²University of Belgrade, Faculty of Medicine, Belgrade, Serbia; ³Hematology Clinics, Clinical Center of Serbia, Belgrade, Serbia; ⁴Institute of Cardiovascular Disease "Dedinje", Belgrade, Serbia

Systemic APS by Shoenfeld Y Lupus. 2003

- 1) Skin (livedo reticularis)
- 2) Heart (non-verrucal endocarditis)
- 3) Kidneys (renal artery stenosis)
- 4) Circulation (hypertension, atherosclerosis)
- 5) Lung (pulmonary hypertension)
- 6) Brain (cognitive impairment)
- 7) Brain Vasculature (migraine)
- 8) Blood elements (AIHA, thrombocytopenia)
- 9) Bones (osteonecrosis)
- 10) Adrenals (apoplexy)
- 11) Placenta (insuficiency, fetal death)
- 12) Pregnancy (eclampsia, pregnansy loss)
- 13) Coagulation (hypercoagulable state)
- 14) Blood vessels (accelerated atherosclerosis)
- 15) Eyes (amaurasis fugox, optic neuritis)
- 16) Ears (acute hearing loss)
- 17) GI involvement (spleen, Budd Chiari)

Methods

Cardiac non-thrombotic manifestations

 Neurological non-thrombotic manifestations

✓ Skin non-thrombotic manifestations

✓ Hematological

Table 1. Prevalence of non-thrombotic manifestations in patients with primary and secondary APS

Non-criteria manifestations	040000000000000000000000000000000000000	CONTRACTOR NOTES	p-value
	PAPS (N=260)	SAPS (N=114)	
Epilepsy	5 (8.4)	21 (18.4)	p=0.0001
Chorea	0 (0)	9 (7.9)	p=0.0001
Livedo reticularis	34 (13.1)	76 (66.7)	p=0.0001
Pseudovasculitis	33 (12.7)	68 (59.6)	p=0.0001
Skin ulcerations	25 (9.6)	40 (35.1)	p=0.0001
Thrombocytopenia	43 (16.5)	44 (38.6)	p=0.0001
Valve thickening and dysfunction	9 (3.5)	7 (6.1)	p=0.182

Incidence of non-criteria manifestations in pts with/without LA

Non-criteria manifestation	PAPS			SAPS		
	Negative %	Positive %	p value	Negative %	Positive %	p value
Epilepsy	8.0	5.7	0.397	17.0	17.0	0.608
Migraine	33.3	24.1	0.132	42.6	27.7	0.097
Chorea	/	/	1	6.4	12.8	0.243
Dementia	<u>11.5</u>	3.4	0.038*	17.0	12.7	0.773
Livedo reticularis	16.0	10	0.272	34	28	0.138
Pseudovasculitis	11	14	0.383	33	23	0.058
Skin ulcerations	6	8	0.506	13	17	0.254
Thrombocytopenia	7	<u>18</u>	0.036*	16	21	0.199

Distribution of non-criteria manifestation according to different aPL levels in APS pts

Level of aCL IgG	Low (%)	Medium (%)	High (%)	P
Epilepsy	7.4	<u>24.8</u>	7.4	0.021
Thrombocytopenia	<u>29.0</u>	11.3	17.8	0.001
Level of aCL IgM				
Epilepsy	<u>33.3</u>	22.2	14.8	0.032
Skin ulcerations	<u>34.1</u>	15.9	6.8	0.013
Level of β_2 GPI IgG				
Dementia	<u>22.2</u>	<u>25.9</u>	3.7	0.047
Thrombocytopenia	<u>27.4</u>	14.5	11.3	0.001
Level of β_2 GPI IgM				
Pseudovasculitis	<u>39.5</u>	2.5	8.6	0.017
Skin ulcerations	<u>29.5</u>	4.5	11.4	0.044

Distribution of pts with PAPS according to aCL-IgG levels

	Negative %	Low %	Medium %	High %	P
Vegetations	60.1	26.6	13.3	0	1.0
Pseudoinfective endocarditis	40.0	60.0	0	0	0.547
Non stable angina	61.9	28.6	9.5	0	0.588
Coronary bypass occlusion	50.0	50.0	0	0	0.312
Epilepsy	81.8	9.1	9.1	0	0.494
Migraine	65.2	23.9	10.7	0	0.530
Dementia	76.9	15.4	7.7	0	0.645
Livedo reticularis	<u>60.0</u>	<u>20.0</u>	4.0	4.0	0.013*
Pseudovasculitis	20.0	38.5	7.7	0	0.680
Skin ulceration	18.7	14.2	7.1	0	0.645
Thrombocytopenia	<u>56.0</u>	20.0	8.0	16.0	0.001*

Distribution of pts with PAPS according to aPL levels

Level of aCL IgG	N (present)	Low	Medium	High	p
Livedo reticularis	22	<u>22.7%</u>	4.6%	4.6%	0.013
Thrombocytopenia	25	<u>20.0%</u>	8.0%	<u>16.0%</u>	0.001
Level of β_2 GPI IgG					
Thrombocytopenia	25	<u>24.0%</u>	12.0%	<u>20.0%</u>	0.0003
Level of $\beta_2 GPI IgM$					
Migraine	45	<u>41.3%</u>	4.3%	2.2%	0.003

Distribution of pts with SAPS according to aPL levels

aPL		Low	Medium	High	P
Level of aCL IgM	N (present)				
Skin ulcerations	30	<u>40.0%</u>	20.0%	16.7%	0.049
Level of β_2 GPI IgG					
Chorea	9	<u>44.4%</u>	<u>44.4%</u>	11.1%	0.008
Level of β_2 GPI IgM					
Chorea	9	22.2%	<u>33.3%</u>	11.1%	0.047
Livedo reticularis	62	<u>38.7%</u>	3.2%	8.1%	0.008
Pseudovesculitis	54	<u>39.3%</u>	3.6%	10.7%	0.032
Thrombocytopenia	37	<u>21.6%</u>	8.1%	8.1%	0.001

Methodology

In all patients, clinical observation was performed to reveal the presence of skin manifestations

- Livedo reticularis
- Skin ulcerations
- Pseudovasculitis
- Digital Gangrene

Skin non-thrombotic manifestations

Livedo reticularis is a marker for predicting multi-system thrombosis in antiphospholipid syndrome

E. Toubi¹, I. Krause^{2,3}, A. Fraser³, S. Lev³, L. Stojanovich⁴, J. Rovensky⁵, M. Blank², Y. Shoenfeld²

¹Division of Allergy and Clinical Immunology, Bnai Zion Medical Center, Haifa; ²Department of Internal Medicine B and Center of Autoimmune-Diseases, Sheba Medical Center, Tel Hashomer; ³Department of Medicine E, Rabin Medical Center, and Sackler Faculty of Medicine, Tel-Aviv University, Israel; ⁴Department of Rheumatology and Hospital Center, Bezanijskakosa, Belgrade, Serbia; ⁵Research Institute of Rheumatic Diseases, Piestany, Slovakia.

31% pts had Livedo reticularis

B2GPI IgM levels in APS with and without skin ulcerations

ß2GPI IgM levels in APS with and without pseudovasculitis

aCL IgM levels in SLE with and without skin ulcerations

Level of aCL IgM

β₂GPI IgM levels in SLE with and without livedo reticularis

Wrapping up

- ✓ Our study results showed correlations between skin lesions and various levels of antiphospholipid antibodies.
- \checkmark Patients with Hughes Sy and high levels of $\beta_2 GPI$ IgM are more prone to skin ulcerations and pseudovasculitis.
- ✓ Pseudovasculitis is more common in patients with high levels of aCL IgM.
- ✓ High levels of β_2 GPI IgM may play a predictive role in livedo reticularis in SLE patients /*from our registry*/.

There was no correlation between non-criteria APS cardiologycal manifestations and:

- \checkmark others clinical manifestations of SLE
- ✓ cardiovascular risk factors (including diabetes) (p> 0.05)
- \checkmark SLE activity (SLEDAI) and other parameters

There was a correlation between: Patients with aCL - IgM and:

• CABG/PTCA (*p=0.026*)

coronary artery bypass grafting/ percutaneus coronary artery angioplasty

Pseudoinfective endocarditis (p=0.037)

There was a correlation between:

Pseudoinfective endocarditis and:

- Patients with aCL IgM (p=0.037)
- Patients without LA (p=0.014)

PAPS and SLE patients did not differ among themselves with regard to the occurrence of MI (p = 0,102) and UAP (p = 0.123) unstable angina pectoris (UAP)

Close Association between valvular heart disease and central nervous system manifestations in the antiphospholipid syndrome

Ilan Krause, Shaul Lev, Abigail Fraser, Miri Blank, Margalit Lorber, Ludmilla Stojanovich, Josef Rovensky, Joab Chapman and Yehuda Shoenfeld

Ann. Rheum. Dis published online 18 Mar 2005;

488 Patients

Distribution of aPL

Prevalence of Valvular Manifestations in %

Valvular Vegetations on Mitral Valve in Patient with Antiphospholipid Syndrome

Valvular Manifestations and aPL Type

aCL IgG	Positive	Negative	Р
PIE	19.5%	10.1%	0.004
Valvular dysfunction	6.5%	2.0%	0.013

aCL IgM

PIE	9.1%	2.6%	0.002
*PIE – pseudoinfective endocarditis			

Valvular Manifestations and aPL Titer

 ✓ Valvular manifestations in our cohort were significantly related to titers of aCL antibodies.

✓ The level of aCL IgG (p=0.005, Pearson +0.138) were in positive correlation with presence of pseudoinfective endocarditis.

Take-home messages

✓ The Serbian National APS Registry allowed us to ascertain a significantly increased incidence of endocarditis development in APS patients with aCL-IgM.

✓ Presence of LA was significantly connected to lower incidence of pseudoinfective endocarditis.

✓ Patients with APS had higher incidence of CABG: coronary artery bypass grafting. Does the presence of secondary antiphospholipid syndrome in patients with systemic lupus erythematodes accelerate carotid arteries intima-media thickness changes? Aleksandra Djokovic, Lj. Stojanovich, N. Stanisavljevic, V. Bisenic, S. Radovanovic, I. Soldatovic &

Rheumatology International Clinical and Experimental Investigations

Vol 16, Number 5, May 2014

ORIGINAL ARTICLES

Association between Cardiac Manifestations and Antiphospholipid Antibody Type and Level in a Cohort of Serbian Patients with Primary and Secondary Antiphospholipid Syndrome Aleksandra Djokovic, Ljudmila Stojanovich, Milica Kontic, Natasa Stanisavljevic, Slavica Radovanovic and Dragomir Marisavljevic

Neurological Manifestations

SCHEDULE

May 5th, 2013

08:00-08:30 - Registration 08:30-9:00 - Entrance test

09:00-10:00 - Prof. Hughes GV Hughes syndrome (the antiphospholipid syndrome): a disease of our time

10:00-11:00 - Prof. Shoenfeld Y Infections and vaccines in the etiology of antiphospholipid syndrome

11:00-12:00 - Prof. Khamashta MA Management of antiphospholipid syndrome

12:00-12:30 - Break

12:30-13:30 - Prof. Cervera R APS: Lessons from the Euro-Phospholipid Project

13:30-14:30 - Prof. Alekberova Z The problem of APS in the Russian Federation

14:30-15:30 - Prof.Stojanovich L. Lessons from the Serbian Antiphospholipid Project

May 6th, 2013

09:00-10:00 - dr N. Stanisavljević, mr sc med The role of endothelial and haematological factors for the development of thrombosis in antiphospholipid syndrome

10:00-11:00 - dr B.Pazin, mr sc med The role of antiphospholipid antibodies in pregnancy outcomes

11:00-12:00 - dr.A.Djoković, mr sc med Cardiological manifestations of antiphospholipid syndrome

12:00-12:30 - Break

12:30-13:00 - dr.M.Kontić, dr sc med Pulmonary manifestations in APS

13:00-13:30 - dr. B. Trninić Skin manifestations in APS

13:30-14:00 - dr.D.Popović-Kuzmanović,mr sc med Genetic and immuno-serological markers of APS

14:00-14:30 - Doc J.Šaponjski, dr sc med New approaches for early diagnosis of occlusive disease in APS

14:30-15:00 - Doc S. Jelić, dr sc med Metabolic syndrome in APS patients

15:00-16:00 - Exit test and Congress evaluation 16:00 - Certificate distribution Bezanijska Kosa University Medical Center Belgrade University, Serbia

presents

INTERNATIONAL CONGRESS

ANTIPHOSPHOLIPID SYNDROME (HUGHES SYNDROME)

IMPORTANCE OF MULTIDISCIPLINARY APPROACHES

30 YEARS SINCE DEFINITION

AMPHITHEATER "BEZANIJSKA KOSA" BELGRADE May 5-6, 2013

METHODOLOGY electrophysiological tests

- Electroencephalography (EEG)
- Evoked potentials (EP)
- Electromyoneurography (EMNG)

IMAJ • VOL 11 • JUNE 2009

ORIGINAL ARTICLES

Neuropsychiatric Lupus and Association with Cerebrospinal Fluid immunoglobulins: A Pilot Study

Ljudmila Stojanovich MD¹, Dusica Smiljanich-Miljkovich MD², Roald Omdal MD³ and Boris Sakic PhD⁴

¹Department of Rheumatology, Bezanijska Kosa, University Medical Center, Belgrade and ²Clinical-Hospital Center (KBC), Department of Neurology, Zemun, Serbia ³Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway

METHODOLOGY MRI Findings

Multiple microinfarctions	41.4%
Brain atrophy	18.9%
Large infarction	10.3%
Increased gray matter density	5.3%
More than one abnormal finding	20.7%

Frequency of Neurology Manifestations in PAPS patients

Frequency of Neurology Manifestations in SLE patients

Comparison of frequency of neurological manifestations between PAPS and SAPS pts

	PAPS	SAPS			
			р		
Transient ischemic attack	21.6%	27%	0.237		
Chorea	0%	<u>7.8%</u>	0.000*		
Epilepsy	5%	<u>19.1%</u>	0.001*		
Migraine	28%	<u>34.8%</u>	0.026*		
Transient global amnesia	1.4%	1.7%	0.769		
Acute ischemic encehalopathy	1.4%	4.3%	0.305		
Anterior spinal artery syndrome	0%	0.9%	0.550		
Cehalea	<u>24%</u>	13.9%	0.031*		
Vertigo	8.3%	3.5%	0.093		
Sy depressivum	<u>3.7%</u>	0%	0.037*		

Results

There was statistically significant correlation between

- epilepsy and high levels of aCL IgG (p=0.021) and IgM (p=0.032)
- dementia and medium levels of ß2GPI IgG (p=0.047)
- TIA and medium levels of aCL IgG (p=0.007)

Results PAPS

There was statistically significant correlation between:

- TIA and high levels of ß2GPI IgM (p=0.0137)
- migraine showed negative correlation with high levels of ß2GPI IgM(p=0.003)

Results SLE patients

There is statistically significant correlation between chorea and

- medium aCL IgG (p= 0.003)
- B2GPI IgM titers (p= 0.047)

aCL IgG levels in APS with and without epilepsy

aCL IgM levels in APS with and without epilepsy

B₂GPI IgM levels in PAPS with and without migraine

aCL IgG levels in SLE with and without chorea

Patients with choreaPatients without chorea

Correlation between neurological and cardiac manifestations in PAPS

PAPS patients		Transient ischemic attack			Epilepsy			Transient global amnesia			Depression		
		-	+	Р	-	+	Р	-	+	Р	-	+	Р
Non stable angina pectoris	-	158	36	0.002*	187	7	0.006*	193	1	0.002*	187	6	0.217
	+	13	11		20	4		22	2		22	2	
Valve vegetations	-	160	40	0.064	193	7	0.001*	198	2	0.285	15	3	0.002*
	+	11	7		14	4		17	1		194	5	

Association between non-thrombotic neurological and cardiac manifestations in patients with antiphospholipid syndrome

L. Stojanovich¹, M. Kontic², D. Smiljanic³, A. Djokovic¹, B. Stamenkovic⁴ D. Marisavljevic^{1,5}

¹Internal Medicine, "Bezanijska Kosa", University Medical Centre, Belgrade, Serbia;
 ²Clinic for Pulmonology, Clinical Center of Serbia, University in Belgrade, Serbia;
 ³Department of Neurology, Clinical-Hospital Centre (KBC) Zemun, Belgrade, Serbia;
 ⁴Rheumatology Clinic, Institute Niska Banja, Medical Faculty, University of Nis;
 ⁵Faculty of Medicine, University of Belgrade, Belgrade, Serbia.

Correlation between neurological and cardiac manifestations in SAPS

	Transient ischemic attack			Acute ischem	nic enceph	alopathy	Vertigo				
SAPS patients											
		not present	present	р	not present	present	Р	not present	present	Р	
	not present	80	24		102	2		101	3		
				0.004			0.000*			- 0,285	
Non stable angina pectoris	present	4	7	*	8	3		10	1	0.200	

International Conference on Cardiology (Cardiology'11) (part of Summer WORLDMED) Prague, Czech Republic, September 26-28, 2011

Plenary Lecture 3:

Non-Thrombotic Neurological and Cardiac Manifestations in Antiphospholipid Syndrome by Prof. Ljudmila Stojanovich, Belgrade University, SERBIA.

Take-home messages

- ✓ APS patients can be presented with a wide variety of nontrombotic manifestations.
- ✓ The certain aPL type and level correlated with non-criteria APS manifestations, suggesting their predictive or protective role.
- ✓ Our study confirmed that presence of cardiac manifestations may be a risk factor for several types of CNS involvement in APS.

- ✓ The number of aPL do not play a role in noncriteria APS manifestations.
- Not only high, but also medium and low levels of aPL, correlate with the onset of non-criteria APS manifestations, including cardiological, neurological, and dermatological.

Association between systemic non-criteria APS manifestations and antibody type and level: results from the Serbian national cohort study

L. Stojanovich¹, M. Kontic², A. Djokovic¹, D. Marisavljevic¹, N. Ilijevski³, N. Stanisavljevic¹, Z. Mikovic⁴, M. Petkovic¹, V. Kovcin¹

¹Internal Medicine, "Bezanijska Kosa" University Medical Centre, Belgrade; ²Clinic for Pulmonology, Clinical Centre of Serbia, University of Belgrade, Belgrade; ³Institute of Cardiovascular Disease "Dedinje", Belgrade; ⁴High Risk Pregnancy Department, Obstetrics and Gynaecology University Clinic "Narodni Front", Belgrade, Serbia.

