Frederick National Laboratory for Cancer Research

Immune Responses to Human Papillomavirus Vaccines: What We Have Learned

Ligia Pinto, PhD Senior Principal Investigator, HPV Immunology Laboratory

October 1, 2014

DEPARTMENT OF HEALTH AND HUMAN SERVICES • National Institutes of Health • National Cancer Institute The Frederick National Laboratory is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc., for the National Cancer Institute

HPV

- Non-enveloped double-stranded DNA virus
- One of the most common sexually transmitted infections
- >100 types identified
- ~30–40 mucosal
 - ~15–20 oncogenic types
 - HPV 16 and HPV 18 types account for 70% of cervical cancer cases
 - Nononcogenic types
 - HPV 6 and 11 are most often associated with external anogenital warts

Most Common Cancers in Women

Adapted from Parkin et al, Eur J Cancer 2001; 37 S4

Cervical Pathogenesis

HPV persistence is the most important predictor of high grade cervical cancer precursors

HPV Causes More than Cervical Cancer

Frederick National Laboratory for Cancer Research

HPV Associated Cancers, both Sexes, US 2005-2009

	Average annual number of cases	HPV attributable	HPV 16/18 attributable	
Cervix	11,279	10,150	7,470	
Vagina	694	520	380	
Vulva	3,039	2,100	1,480	
Anus	3,084	2,810	2,450	
Oropharynx	2,317	1,670	1,420	
Total (Females)	21,342	17,250	13,200	
Penis	1,003	630	450	
Anus	1,687	1,540	1,400	
Oropharynx	9,312	6,700	5,700	
Total (Males)	12,002	8,800	7,550	

Two Licensed Prophylactic HPV Vaccines (L1 Virus-Like Particles)

Manufacturer	Merck	GlaxoSmithKline
Trade name	Gardasil®	Cervarix™
HPV types	6, 11, 16, 18	16, 18
Adjuvant	AAHS	ASO4 Adjuvant (MPL + Alum)
Licensed	Female and males (ages 9-26yrs)	Females (ages 9-25yrs)
Expected coverage of protection	70% of Cervical Cancer 90% Genital Warts	70% of Cervical Cancer

HPV Prophylactic Efficacy Trials

Table 1

Proof-of-principle HPV VLP prophylactic efficacy trials

Study	Koutsky et al. (32)	Harper et al. (35)	Villa et al. (33)	Mao et al. (34)
HPV VLP type	16	16, 18	6, 11, 16, 18	16
Adjuvant	Alum	AS04	Alum	Alum
Sponsor	Merck	GSK	Merck	Merck
Trial site	United States	United States,	United States,	United States
		Canada, Brazil	European Union, Brazil	
Subject age	16-23	15-25	16-23	16-23
No. subjects (ATP)	1,533	721	468	1,505
Vaccination schedule (mo)	0, 2, 6	0, 1, 6	0, 2, 6	0, 2, 6
Follow-up (yr)	1.5	1.5	2.5	3.5
Persistent infections ^A	42/0 (100)	7/0 (100)	36/4 ^B (90)	111/7 ^c (94)
CIN1+D	9/0 (100)	6/0 (100)	3/0 (100)	24/0 (100)

Shown are according-to-protocol (ATP) analyses for the HPV types included in the vaccines. ^AValues are shown as number of controls versus number of vaccinees with persistent infections; values in parentheses indicate percent efficacy. ^BTen of 36 controls and 3 of 4 vaccinees were HPV DNA positive only at the last visit. ^CNineteen of 111 controls and 7 of 7 vaccinees were HPV DNA positive only at the last visit. ^DValues are shown as number of controls versus number of vaccinees that were CIN1+; values in parentheses indicate percent efficacy. GSK, GlaxoSmithKline.

Lowy DR, Schiller JT. JCI 2006; 116: 1167

Two Prophylactic HPV Vaccines: Protection Beyond Cervical Cancer

	Gardasil (Quadrivalent)	Cervarix (Bivalent)	
Cervix	High protection against HPV-infection and related disease		
Vagina/Vulva	Protection against HPV- infection and related disease	Not evaluated	
Penis	Protection against HPV- infection	Not evaluated	
Anus	Protection against HPV- infection and disease	Protection against HPV- infection	
Oropharynx	Not evaluated Protection against HP infection		

Evolution of Recommendations for HPV Vaccination in the US

Frederick National Laboratory for Cancer Research

Potential Mechanisms of Vaccine-Induced Protection Against Infection and Disease

Cell-Mediated and Humoral Responses to HPV-16 L1 VLP vaccine

10000 8 Antibody Titer (GMT - Ab (S.I.) 8000 6 **Proliferation** 5 - SI 6000 4 4000 3 2 2000 0 0 2 7 0 Antibody Titer (GMT) 10000 400 (lm/gd) - Ab 8000 300 🕂 IL-5 6000 Cytokine 📥 IFN-a 200 4000 ► IL-10 100 2000 0 0 2 7 N Time (month)

(Pinto et al, JID 2003; García-Piñeres et al, EJI 2006; García-Piñeres et al, CVI 2007, Garcia-Pineres et al, JI 2009) Immune Response to Vaccination:

- Type-specific neutralizing antibodies
- T-cell proliferation (CD4+ and CD8+ T cells)
- Complex cytokine responses (Th1, Th2 and inflammatory cytokines)
- Innate immune responses (DC activation)

Frederick

Laboratory

National

for Cancer Research

NCI Costa Rican Vaccine Efficacy Trial: Immunity Studies

- Optimization and validation of assays (serum and cervical secretions)
- Monitor antibody responses and duration of protection
- Understand immune mechanisms of protection and failure
 - Cross-protection
 - Immunogenicity of less than three doses

Validated Assays for Measurement of Antibodies in Serum and Cervix

Frederick National Laboratory for Cancer Research

HPV Serology Assays

- Quantity:
 - HPV IgG ELISA

• Quality/Function:

- Pseudovirion neutralization assay
- ELISA antibody avidity assay
- Memory B cell ELISPOT

All assays used in-house produced HPV VLPs, standards, and controls

HPV-16/18 L1 VLP Vaccine Immunogenicity Study: Costa Rica Vaccine Trial

Frederick

Laboratory

National

Anti HPV-16 Antibody Over 5 Years Follow-Up (Quadrivalent vaccine)

Olsson S *et al.* Vaccine 2007; 25:4931 Villa L *et al.* Vaccine 2006; 24: 5571

Frederick

Laboratory

National

for Cancer Research

Durability of Antibody Response to 3 Doses of the Bivalent Vaccine: 9.4 yrs

Frederick National Laboratory for Cancer Research

Antibody Titers in Gardasil[®] and Cervarix[®] Recipients

Frederick National Laboratory for Cancer Research

* p<0.05, Mann-Whitney U test

Herrin et al. Hum Vaccin Immunother . In Press

Influence of Age at Vaccination in Females (HPV Quadrivalent Vaccine)

Frederick National Laboratory for Cancer Research

Levels of Antibodies in Serum Correlate Well with Levels in the Cervix

Kemp et al., Vaccine, 2008

Cross-Protection Against Persistent Infection with Related High Risk HPV Types

Cervarix HPV16/18 Vaccine ATP analysis; >7,000 per arm: 3.5 yrs follow-up

НРV Туре	# Vaccine	# Placebo	Efficacy
31	21	102	79%
33	31	50	38%
45	10	27	76%
52	150	143	-5%
58	64	56	-15%
All of Above	255	336	24%

Protection Beyond Vaccine Types: HPV-16/18 L1 VLP Vaccine Induces Cross-Neutralizing Antibodies

□ Month 0 ■ Month 1 Month 12 10000 * * **HPV Neutralizing Titers** 1000 * * 100 * * 10 1 HPV-16 HPV-18 HPV-31 HPV-45 HPV-52 HPV-58 **BPV** *p<0.001 **HPV** Type

Frederick

Laboratory

for Cancer Research

National

Kemp et al., *Vaccine*, 2011 Kemp et al., *Vaccine*, 2012

HPV-16 Antibody Avidity Increases after Vaccination over 36 Months of Follow-up

Frederick National Laboratory for Cancer Research

Vaccine Efficacy by Doses Received Costa Rican Vaccine Trial

# of Doses	Arm	# of Women	# of persistent HPV16/18 infections	HPV16/18 VE (95%CI)
2	Control	3010	133	81% (71% to 88%)
5	HPV	2957	25	
0	Control	380	17	84% (50% to 96%)
2	HPV	422	3	
4	Control	188	10	100% (67% to 100%)
	HPV	196	0	

Kreimer A.R. et al. JNCI 2011

HPV16 Antibody levels in Recipients of 1, 2 and 3 Doses of the bivalent HPV vaccine, Costa Rican Clinical Trial

Frederick

Laboratory

for Cancer Research

National

Summary

- High efficacy for preventing HPV infection
- Generally safe and tolerable
- High levels of immunogenicity
 - >99% seroconversion rates in 9-26 years old
 - Antibody titers higher than in natural infection
 - Antibodies decline over time after the 3rd dose, but plateau by 18 months
 - Stable antibody levels up to 9 years of follow-up
 - Induction of T cell immunity and DC activation
 - Non-inferiority of 2 doses, if given at 0, 6 month schedule
 - The minimum protective antibody threshold not known

 Current HPV vaccines will not eliminate the need for cervical cancer screening

There are Still Many Unanswered Questions

Frederick National Laboratory for Cancer Research

Vaccine Performance

- Duration of protection/boosting requirements
- Alternative vaccination schedules/doses/adjuvant
- Immunogenicity and Efficacy in Males

Immunological Mechanisms of Protection/Failure

- Correlates of Protection/Effector mechanisms (neutralizing antibodies)
- Determinants of long-term protection (B/T-cell memory)
- Epitopes
- Surrogates for evaluation of second generation vaccines

Acknowledgments

HPV Immunology Laboratory, Leidos Biomedical Research Inc./ FNLCR

- Troy Kemp
- David Pan
- Gloriana Shelton
- Martha Sklavos
- Ken Matsui
- Marcus Williams

For additional questions:

Ligia Pinto pintol@mail.nih.gov

Division of Cancer Epidemiology and Genetics, NCI

- Allan Hildesheim
- Mahboobeh Safaeian

Laboratory of Cellular Oncology, NCI

- Douglas Lowy
- John Schiller

PEG, Fundacion Inciensa, Costa Rica

- Rolando Herrero
- Ana Cecilia Rodriguez

Adolescent Vaccine (13-17 Years Old), United States, 2006-2012

Frederick National Laboratory for Cancer Research

Centers for Disease Control and Prevention. National and State Vaccination Coverage Among Adolescents Aged 13–17 Years — United States, 2012. *MMWR*. 2013;62(34);685-693; NIS-Teen