Gut microbiota, bacterial metabolites and metabolite sensing GPCRs protect against food allergy

Laurence Macia, PhD

5th European Immunology & Innate Immunity

Increased prevalence of inflammatory diseases over the last 50 years

Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases With Time, Based on Systematic Review

NATALIE A. MOLODECKY,*** ING SHIAN SOON,*** DOREEN M. RABI,*** WILLIAM A. GHALI,*** MOLLIE FERRIS,*
GREG CHERNOFF, ERIC I. BENCHIMOL,*** REMO PANACCIONE,* SUBRATA GHOSH,* HERMAN W. BARKEMA,**** and
GILAAD G. KAPLAN***

1960-1979 After 1980

Increased prevalence of inflammatory diseases in western countries

MASOLI, M. ET AL, Nature, 2011, 479, S2-S4

THE GLOBAL BURDEN OF ASTHMA (2004)

Causes?

GENETIC WESTERN LIFESTYLE

NUTRITION TRANSITION

Western diet: High carbohydrate, high saturated fat and low in fibre

Diet and gut homeostasis as a basis for certain western lifestyle diseases

Role of diet and gut microbiota in food allergy

Current treatment=
Food avoidance

Food allergy

What is it: Inappropriate immune response to innocuous (food) antigen

Symptoms: Swelling, itching, wheezing, diarrhea, difficulty in breathing, anaphylaxis

Prevalence: High in Western countries, up to 1 in 10 affected

Cause?? Hygiene hypothesis

Diet hypothesis Diet -- Intake of fibre - Fermented foods - Obesity - Host genetics - Maternal transfer and early colonisation Microbial composition - Antibiotics and medications - Infection - Inflammation Extension of the hygiene hypothesis - Stress - Hygiene - Age Dysbiosis Symbiosis **SCFA PSA** Virulence factors **PTGN** (and so on) Immune dysregulation Immune regulation Homeostasis

Inflammation

Key steps in allergic reaction

SENSITISATION

- 1. Uptake of allergen by dendritic cells
- 2. Migration to the mesenteric lymph node
- 3. Activation of specific T cells-Th2
- 4. IgE release
- 5. Pool of memory T cells

ALLERGIC REACTION

= 2nd encounter with the allergen
Anaphylaxis/inflammation/tissue damage

High fibre diet and peanut allergy

Diet deprived in fibre or
Diet enriched in fibre

Modified AIN93G Rodent Diet 20% Cellulose 20% Guar Gum

Dietary fibre is associated with decreased allergic reaction

What controls allergy?

High fibre feeding is associated with increased Treg number in mesenteric LN

CD103⁺ DCs are key inducer of Treg in the gut

High fibre feeding and CD103⁺ DCs

↑% CD103+ dendritic cells under high fibre feeding conditions

High fibre feeding and CD103⁺ DCs

- Cells are incubated with a special ALDH-substrate
- ALDH-substrate becomes fluorescent upon the action of

RALDH enzymes

High fibre feeding = more RALDH activity

Dietary fibre modulate CD103⁺ DCs proportion and activity

Mechanisms GPR43 Sodium Acetate H₃C ONa Unweighted UNIFRAC ZFr AIN93G VAD Germ free HF **VAD-HF** HFr ZF ZFd -0.1 HFd -0.3 -0.2 -0.1 0.0 0.1 0.2 PC1 - Percent variation explained 16.80% PC1 - Percent variation explained 13.79% HF microbiota %CD25+FoxP3+ of CD4+ phyla Bacteroidia Germ free Anaphylaxis Score ML695J-21 Other Bacilli Clostricila Erysipelotrich Alphaproteobacteria Betapproteobacter a Deltaproteobacteria Gammaprotocoactoria Mal lautes Tenericutes Verrucom krobiae Deferribacteres ZB2 **ZF** microbiota ZFM HEM ZFM HEM

Mechanism of action of fibre: Short-chain fatty acids (SCFAs)?

SCFAs are major metabolites produced by the microbiota

Role of SCFA in food allergy development

200mM acetate
Or
100mM butyrate
Or
100mM propionate
Or
water

SCFAs effects in peanut allergy

200mM acetate, 100mM butyrate, 100mM propionate for 3 weeks in drinking water

Acetate and Butyrate have beneficial effects:
Anaphylaxis
IgE

Acetate and Butyrate have beneficial effects:
CD103+ DC
Treg

Mechanism of action of fibre: Short-chain fatty acids (SCFAs)?

SCFAs are major metabolites produced by the microbiota

GPCR activation

GPR43

→ GPR109a

GPR43 and GPR109A are implicated
In beneficial effects of fibre
Anaphylaxis
IgE

CD103⁺ DC Treg

Which compartment?

- Vav-CRExGpr43^{flox/flox}= deletion in the hematopoeitic compartment
- *Villin-CRExGpr43*^{flox/flox}: deletion in the gut epithelium

GPR43 in the gut epithelium is important

Which compartment?

Study of GPR109A using the model of bone marrow chimera mice

GPR109 is critical in the hematopoeitic compartment

Conclusion

Tan et al., 2016, Cell Reports 15, 2809-2824

Highlights

- Dietary fiber with vitamin A increases the potency of tolerogenic CD103⁺ DCs
- High-fiber diet protects mice against peanut allergy via gut microbiota and SCFA
- High-fiber effects rely on epithelial GPR43 and immune cell GPR109a

What's next?

- 1. Is it true in human?
- 2. Bacterial candidate?
- Targeting GPCR?

Acknowledgments

Charles Mackay
Jian Tan
Craig McKenzie

Carola Vinuesa

Peter Vuillermin

Australian Government

National Health and Medical Research Council

Laurence.macia@sydney.edu.au

Nutritional Immunometabolism group