

Business from technology

Enzymes and biotechnology: could we overcome modern challenges?

2nd International Conference on Genomics & Pharmacogenomics

Dr. Junio Cota VTT Brasil LTDA

2

SUMMARY

- What is VTT?
- The OMICS Era
- New Enzyme Discovery
- Protein Engineering

VTT Group in brief

Turnover 292 M€ (2010) ■ Personnel 3,167 (1.1.2011)

Customer sectors

- Biotechnology, pharmaceutical and food industries
- Electronics
- Energy
- ICT
- Real estate and construction
- Machines and vehicles
- Services and logistics
- Forest industry
- Process industry and environment

Focus areas of research

- Applied materials
- Bio- and chemical processes
- Energy
- Information and communication technologies
- Industrial systems management
- Microtechnologies and electronics
- Services and the built environment
- Business research

VTT's operations

Research and Development Strategic Research Business Solutions IP Business Group Services

VTT's companies

VTT Expert Services Ltd (incl. Labtium Ltd, Enas Ltd) VTT Ventures Ltd VTT International Ltd VTT Memsfab Ltd

VTT Group on the map

BIOREFINERY

Brazilian biomass raw material

BRAZIL

SUMMARY

- What is VTT?
- The OMICS Era
- New Enzyme Discovery
- Protein Engineering

Human Genome Project

http://web.ornl.gov/sci/techresources/Human_Genome/project/whydoe.shtml

VTT BRASIL LTDA

07/10/2014

Evolution of Cost per Megabase

http://evomics.org/2014/01/sequencing-technology-wheres-my-minion/

Evolution of Whole-Genome Sequencing

Su, Andrew (2013): Cumulative sequenced genomes. figshare.

SUMMARY

- What is VTT?
- The OMICS Era
- New Enzyme Discovery
- Protein Engineering

Enzyme discovery in the OMICS Era

13

Liebl, Wolfgang (2011): Metagenomics

New Enzymes for Biofuels: GH 10 Xylanase

OPEN a ACCESS Freely available online

Development and Biotechnological Application of a Novel Endoxylanase Family GH10 Identified from Sugarcane Soil Metagenome

Thabata M. Alvarez^{1,2®}, Rosana Goldbeck^{1®}, Camila Ramos dos Santos^{3®}, Douglas A. A. Paixão¹, Thiago A. Gonçalves^{1,2}, João Paulo L. Franco Cairo^{1,2}, Rodrigo Ferreira Almeida¹, Isabela de Oliveira Pereira¹, George Jackson¹, Junio Cota¹, Fernanda Büchli^{1,2}, Ana Paula Citadini¹, Roberto Ruller¹, Carla Cristina Polo³, Mario de Oliveira Neto⁴, Mário T. Murakami³*, Fabio M. Squina¹*

1 Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil, 2 Departamento de Bioquímica, Instituto de Biologia (IB), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil, 3 Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brasil, 4 Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brasil

Enzymes for Biofuels: GH 10 Xylanase

16

Proteomics: Secretome of *Penicillium equinulatum*

OPEN O ACCESS Freely available online

The *Penicillium echinulatum* Secretome on Sugar Cane Bagasse

Daniela A. Ribeiro¹, Júnio Cota¹, Thabata M. Alvarez¹, Fernanda Brüchli¹, Juliano Bragato¹, Beatriz M. P. Pereira¹, Bianca A. Pauletti¹, George Jackson¹, Maria T. B. Pimenta¹, Mario T. Murakami², Marli Camassola³, Roberto Ruller¹, Aldo J. P. Dillon³, Jose G. C. Pradella¹, Adriana F. Paes Leme¹, Fabio M. Squina¹*

Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil,
Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, (CNPEM), Campinas, São Paulo, Brazil,
Campinas, São Paulo, Brazil, 3 Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sol, Brazil

17

SCE

MCL

DNPC

BIX

SAT

Proteomics: Secretome of Penicillium equinulatum

18

Proteomics: Secretome of Trichoderma harzianum

Bioresource Technology 131 (2013) 500-507

Understanding the cellulolytic system of *Trichoderma harzianum* P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α -L-arabinofuranosidase

Priscila da Silva Delabona^{a,*}, Júnio Cota^a, Zaira Bruna Hoffmam^a, Douglas Antonio Alvaredo Paixão^a, Cristiane Sanchez Farinas^b, João Paulo Lourenço Franco Cairo^a, Deise Juliana Lima^a, Fábio Marcio Squina^a, Roberto Ruller^a, José Geraldo da Cruz Pradella^a

^a Brazilian Bioethanol Science and Technology Laboratory – CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caixa Postal 6192, CEP 13083-970, Campinas, São Paulo, Brazil

^bEmbrapa Instrumentation, Rua XV de Novembro 1452, CEP 13560-970, São Carlos, São Paulo, Brazil

19

Proteomics: Secretome of *Trichoderma harzianum*

20

SUMMARY

- What is VTT?
- The OMICS Era
- New Enzyme Discovery
- Protein Engineering

21

Protein Engineering is a tailor-made process

THE SCIENCE OF WHAT'S POSSIBLE.™

What's on your mind? What's your need?

22

Protein Engineering: Rational or Non-rational Design?

Current Paradigms

X

Mechanism-based

(Rational)

Detailed structural analysis

23

Building a Xylanase – Lichenase Chimera

Biochimica et Biophysica Acta 1834 (2013) 1492-1500

Assembling a xylanase–lichenase chimera through all-atom molecular dynamics simulations

Junio Cota ^{a, d, 1}, Leandro C. Oliveira ^{a, b, 1}, André R.L. Damásio ^a, Ana P. Citadini ^a, Zaira B. Hoffmam ^a, Thabata M. Alvarez ^a, Carla A. Codima ^a, Vitor B.P. Leite ^b, Glaucia Pastore ^c, Mario de Oliveira-Neto ^d, Mario T. Murakami ^e, Roberto Ruller ^a, Fabio M. Squina ^{a,*}

^a Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE/CNPEM, Campinas, SP, Brazil

^b Departamento de Física, IBILCE, Universidade Estadual Paulista - UNESP, São José do Rio Preto, SP, Brazil

^c Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, SP, Brazil

^d Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu, São Paulo, Brazil

e Laboratório Nacional de Biociências — LNBio/CNPEM, Campinas, SP, Brazil

24

Chimeras: Multidomain Proteins

- Multidomain/multifunctional proteins can reduce costs with enzyme load;
- End-to-end fusion between the N and C termini of the parental enzymes can result in nonfunctional chimeras.

S.Y. Hong et al., Biotechnology Letters, 29, 931-936 (2007)

25

Chimeras: Multidomain Proteins

✓ The selection of the linker sequence is particularly important for the construction of functional fusion proteins

26

Building Chimeras: Molecular Dinamics

- ✓ Energy Landscape Theory
- ✓ Structure Based Models
- The topology could drives the protein folding
- ✓ Save computational time

X. L. Ji, and S. Q. Liu. J. Biomol Struct Dyn 28, 621-623 (2011)

27

Structure Based Models (SB)

The unique Free Energy basin suggests a group of structures candidates: simulations are mainly driven by the entropy of the system

28

Building Chimera

Overlap PCR

SDS-PAGE

29

SAXS experimental and theoretical curves

Optimal pH

Optimal Temperature

Substrate Specificity

	Specific activity (U/nmol)		
Substrate	Xylanase	Lichenase	XylLich
Birchwood Xylan	3.73 ± 0.29	ND	2.71 ± 0.13
Beechwood Xylan	3.17 ± 0.07	ND	2.87 ± 0.08
Rye Arabinoxylan	3.73 ± 0.14	ND	3.03 ± 0.15
Wheat Arabinoxylan	1.36 ± 0.12	ND	0.88 ± 0.07
Oat Spelt Xylan	3.28 ± 0.27	ND	2.15 ± 0.06
Lichenan	ND	3.65 ± 0.29	3.85 ± 0.16
β-Glucan	ND	5.03 ± 0.20	5.11 ± 0.07
Laminarin	ND	ND	ND
Xyloglucan	ND	ND	ND
Glucomannan (Konjac)	ND	ND	ND

Capillary Electrophoresis

34

Capillary Electrophoresis

Xylohexaose + Lichenan

Conclusions

- This work presented a novelty way to predict the disposal of chimera domains in solution before experimental assays;
- A potential tool for screening and development of enzyme cocktails for second generation biofuels;
- The expansion of hydrolase activities in an unique protein could be a route for increase cost-effective of biomass saccharification;
- Enzyme production data suggests an advantage on producing the fused protein instead the wild type ones separated.

37

Protein Engineering: Typical Challenges

- Design proteins with certain function;
- Design proteins which bind novel ligands;
- Alter binding affinity and specificity of proteins;
 - Increase activity of enzymes;
 - Change thermal tolerance, pH stability;
 - Alter allosteric regulation;
 - Decrease inhibition of enzymes;
 - Increase protease resistance;
 - Reactivity in nonaqueous solvents;
 - Eliminate cofactor requirement.

38

Acknowledgements

Centro de Ciência e Tecnologia do Bioetanol

RCNPg **FAPESP**

junio.silva@vttbrasil.com

juniocs@gmail.com