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Today’s	message
l Neurodevelopmental	Disorders	may	be	caused	by	not	only	
genetic	factors,	but	also	environmental chemicals, such as air
pollutant, metal,	and	pesticides.

l Neonicotinoid	insecticides	(neonics)	are	world	best	selling	
systemic	pesticides,	nicotinic	acetylcholine	receptor	agonist.

l Neonics might	cause	neurodevelopmental	disorders	by	
environmental	exposure,	because	in	vitro,	animal,	and	clinical	
studies	suggest	it,	recently.

l We	have	few	evidence	that	neurodevelopmental	disorders	are	
not increasing by use of neonicotinoids.

l To	keep	natural	child	neurodevelopment,	to	revise	acceptable	
dose	of	intake	of	neonicotinoids	are	one of the rational	ways.

l I	have	no	COI	with	regard	to	our	presentation.



Children	(6-14	years	old)	with	special	need	
by	neurodevelopmental	disorders	in	Japan

• Consistently increasing in these ten years (Ministry of 
Education, Culture, Sports, Science and Technology, 2015).
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� From 1997 to 2013, the proportion of children ages 5 to 17 years reported to have ever 
been diagnosed with attention-deficit/hyperactivity disorder (ADHD) increased from 6.3% in 
1993 to 10.7% in 2012 and 9.9% in 2013.  

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has Attention Deficit/Hyperactivity Disorder 
(ADHD). 
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� In 2013, 8.2% of children ages 5 to 17 years had ever been diagnosed with a learning 
disability. There was little change in this percentage between 1997 and 2013. 

� For the years 2010–2013, the percentage of boys reported to have a learning disability 
(10.4%) was higher than for girls (6.6%). This difference was statistically significant. (See 
Table H7a.) 

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has a learning disability. 
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* The estimate should be interpreted with caution because the standard error of the estimate is relatively large: the relative 
standard error, RSE, is at least 30% but is less than 40% (RSE = standard error divided by the estimate). 

 

� The percentage of children ages 5 to 17 years reported to have ever been diagnosed with 
autism rose from 0.1% in 1997 to 1.2% in 2013. This increasing trend was statistically 
significant. 

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has autism. 
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� In 2013, 1.4% of children ages 5 to 17 years were reported to have ever been diagnosed 
with intellectual disability (mental retardation). This percentage fluctuated between 0.6% 
and 0.9% from 1997 to 2010, and was between 1.3% and 1.4% from 2011 to 2013. 

Data characterization 
- Data for this indicator are obtained from an ongoing annual survey conducted by the National Center for 

Health Statistics. 
- Survey data are representative of the U.S. civilian noninstitutionalized population. 
- A parent or other knowledgeable adult in each sampled household is asked questions regarding the child’s 

health status, including if they have ever been told the child has mental retardation. Starting in 2011, the 
term “mental retardation” in the question was revised to “an intellectual disability, otherwise known as 
mental retardation.” 
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The	cause	of	neurodevelopmental	disorders	(EPA	2015)

• Attention-Deficit/Hyperactivity	Disorder	(ADHD)
• Genetic	factor
• Maternal	smoking	during	pregnancy
• Preterm	birth,	Low	birth	weight,	Psychosocial	adversity
• Lead,	PCB,	Phthalate,	Organophospahte pestidies,	Perfluorinated
chemicals,	Mercury

• Learning	disablity
• Genetic	factor
• Problem	during	pregnancy
• Lead,	Tabacco Smoke,	Mercury,	PCB	

• Autism	Spectrum	Disorders
• Genetic	factor
• Pesticide, Mercury,	Air	Pollutant,	Phthalates

• Intellectual	Disability	(Mental	Retardation)
• genetic	disorders,	traumatic	injuries,	and	prenatal	events
• Lead,	mercury,	PCB,	organophosphate	pesticides,	PBDEs,	phthalates,	PAHs	



Neurodevelopmental	Disorders	may	be	caused	by	pesticides
l Insecticides are neurotoxic.
l Several epidemiological study showed positive 

relationships between environmental pesticide exposure
and neurodevelopmental disorders.

l However, the data about neonicotinoids are rare.
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Neuronal	
effect site

ADHD autism Developmental
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Organochlorines Na+	
channel + + +

Organophosphates Enzyme + + +

Pyrethroids Na+	
channel + + +

Neonicotinoids Receptor ?



Neonicotinoids are	systemic	insecticides.
• Long	lasting	in	plant, famous	as	honey	bee’s	risk.
• Nicotinic	acetylcholine	receptor	(nAChR)	agonists

Background	3
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Ⅰ．評価対象農薬の概要 1 

１．用途 2 

殺虫剤 3 

 4 

２．有効成分の一般名 5 

和名：フルピラジフロン 6 

英名：flupyradifurone （ISO 名） 7 

 8 

３．化学名 9 

IUPAC 10 

和名：4-[(6-クロロ-3-ピリジルメチル) (2,2-ジフルオロエチル)アミノ]フラン11 

-2-(5H)-オン 12 

英名：4-[(6-chloro-3-pyridylmethyl) (2,2-difluoroethyl)amino]furan 13 

-2-(5H)-one 14 

CAS（No. 951659-40-8） 15 

和名：4-[[6-クロロ-3-ピリジニル]メチル(2,2-ジフルオロエチル)アミノ]-  16 

2(5H)-フラノン 17 

英名：4-[[6-chloro-3-pyridinyl]methyl](2,2-difluoroethyl)amino]- 18 

2(5H)-furanone 19 

 20 

４．分子式 21 

C12H11ClF2N2O2 22 

 23 

５．分子量 24 

288.68 25 

 26 

６．構造式 27 

 28 

７．開発の経緯 29 

フルピラジフロンは、バイエルクロップサイエンス社により開発された殺虫剤で、30 

吸汁性害虫及び甲虫目の咀嚼性害虫のニコチン性アセチルコリン受容体へのアゴ31 

ニストとして殺虫効果を示すと考えられている。 32 

今回、インポートトレランス設定の要請（小麦、トマト等）がなされている。 33 

34 

Flupyradifurone



Shipment	of	neonicotinoids	(tons)
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nAChRs have critical role in	neurodevelopment.
• In	the	human	fetal	cerebellum,	α4,	α7,	β2,	and	β4	nAChRs	are	highly	
expressed	(Hellström-Lindahl,	1998).

• Endogenous	cholinergic	signaling	via	nAChRs	is	important	in	determining	the	
morphological	and	functional	maturation	of	neural	circuit	formation	(Miwa,	
2011).

• Glutamatergic	synapse	formation	is	promoted	by	α7-containing	nAChRs	and	
affected	by	nicotine	exposure	in	hippocampal	and	cortical	neurons	(Lozada,	
2012).	

• Retinal	β2	nAChRs	are	necessary	for	visual	circuit	formation	(Burgridge,	
2014)

• Prenatal	nicotine	exposure	alters	the	visual	cortex	system	in	baboons	
(Duncan,	2015).	

• Even	at	a	dose	lower	than	that	necessary	to	activate	the	receptor,	nicotine	
causes	desensitization	of	nAChRs	(Wang,	2005),	which	results	in	a	
disturbance	of	normal	synapse	formations	at	the	developmental	stage	
(Slotkin,	2016).
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Acetamiprid and Imidacloprid Alter the Gene Expression 
Profile of Neuron-Enriched Cultures from Neonatal Rat 
Cerebellum (Kimura-Kuroda 2016)

• long- term	(14	days)	exposure	of	neuron-enriched	cultures	
• low	dose	(1	μM)	nicotine,	acetamiprid or	imidacloprid.
• A	slight	disturbance	in	Purkinje	cell	dendritic	arborization was	
observed	in	the	exposed	cultures.	
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Figure 2. Dendritic arborization of Purkinje cells in cerebellar cultures exposed to nicotine (NIC), 

acetamiprid (ACE), and imidacloprid (IMI) for 14 days (16DIV). A slight disturbance in the dendritic 

arborization exposed to NIC, ACE, and IMI was observed. Upper panel shows a representative cell 

from each group stained for anti-calbindin D28k. Bar = 50 μm. Graph shows MetaMorph 
quantification of calbindin D28k-reactive dendritic area (without cell soma) (n = 10 cells per group). 

Error bar represent standard errors. T-tests were conducted for each treatment versus control. * p < 

0.05. 

3.2. Differential Gene Expression after Exposure to NIC, ACE and IMI 

For control versus NIC (CvN), 4550 of 23,011 filtered probes were identified as significant  

(p < 0.05, q < 0.05), and were used for differential expression analysis (fold change (FC) ≥ 1.5).  

The 92 probes that passed were checked for multiple probes, gene symbol, descriptions, and of these 

34 DE genes were selected (Tables 1 and 2). 

For control versus ACE (CvA), 4557 of 23,012 filtered probes were significant (p < 0.05, q < 0.05), 

of which 106 DE probes (FC ≥ 1.5) were checked as described above, and 48 DE genes were selected 

(Tables 1 and 3). 

For control versus IMI (CvI), 4862 of 22,852 filtered probes were significant (p < 0.05, q < 0.05), of 

which 162 DE probes (FC ≥ 1.5) were checked, and 67 DE genes were selected (Tables 1 and 4). 

Next, we constructed Venn diagrams to visually assess the overlap and separation between the 

three DE gene lists, CvN (34 genes), CvA (48 genes), and CvI (67 genes). As shown in Figure 3 and 

Table 1, nine genes (four upregulated and five downregulated versus control) were common to three 

gene lists. Common to at least two lists were three genes between CvN and CvA, five genes between 

CvN and CvI, and four genes between CvA and CvI. 

Other DE genes unique to CvN, CvA, or CvI are shown in Tables 2–4. The differential expression 

levels of the three groups are presented as heat maps and standard deviations that display expression 

differences between each of the treatments (NIC, ACE, and IMI) and control (Figure 4, Table S2). 

In	vitro	study	
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• Moreover,
• Significant	differential	expression	(p<0.05,	q<0.05,	≥1.5	fold)		
between	control	cultures	versus	nicotine-,	acetamiprid-,	or	
imidacloprid-exposed	cultures	in	34,	48,	and	67	genes,	
respectively.

• Common	to	all	exposed	groups	were	nine	genes	（four	genes	up,	
five	genes	down)	essential	for	neurodevelopment.

• Chronic	neonicotinoid	exposure	alters	the	transcriptome	of	the	
developing	mammalian	brain	in	a	similar	way	to	nicotine	exposure.	

Int. J. Environ. Res. Public Health 2016, 13, 987 12 of 27 

 

Table 4. Cont. 

Gene 
Symbol 

Probe Name a Description Log2FC, p, q 

RGD1561114 A_64_P012158 
PREDICTED: ral guanine nucleotide 

dissociation stimulator-like 
down −0.62, 4.6 × 10−2, 1.8 × 10−3 

RGD1564095 A_64_P043524 PREDICTED: 60S acidic ribosomal protein P2-like down −0.88, 2.8 × 10−2, 1.8 × 10−3 

RGD1564571 A_64_P159245 PREDICTED: CD209 antigen-like protein A-like down −0.61, 2.8 × 10−2, 1.8 × 10−3 

RGD1566248 A_64_P157099 PREDICTED: necdin-like down −1.17, 4.6 × 10−2, 1.8 × 10−3 

Scnn1b A_64_P068913 sodium channel, non-voltage-gated 1, beta subunit down −1.02, 2.8 × 10−2, 1.8 × 10−3 

Slc38a8 A_64_P056897 solute carrier family 38, member 8 down −0.77, 2.8 × 10−2, 1.8 × 10−3 

Tmem52b A_64_P114148 transmembrane protein 52B down −0.70, 4.6 × 10−2, 1.8 × 10−3 
a Probe names are Agilent ID numbers of Rat Gene Expression ver.3 Microarray. DE: differentially expressed; CvI: 
control versus IMI; FC: fold change; positive FC = upregulation versus control; negative FC = downregulation 
versus control; p: p-value; q: false discovery rate; FC, p, and q values were calculated from microarray data of six 
independent experiments. 

  

Figure 3. Overviews of gene expression changes in cerebellar cultures exposed to nicotine (NIC), 
acetamiprid (ACE), and imidacloprid (IMI) for 14days (16DIV). In altered transcriptomes of control 
versus NIC (CvN), control versus ACE (CvA), and control versus IMI (CvI), 34, 48, and 67 genes, 
respectively were filtered at cutoff threshold values of p < 0.05, q < 0.05, and fold change (FC) ≥ 1.5. 
Venn diagrams show numbers of genes upregulated (A) and downregulated (B) after the three 
treatments versus control. 
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Acetamiprid accumulates in special site of murine 
brain (Terayama 2016).

• Mospilan SP	(18%	acetamiprid +	surfactant,	dimethyl	sulfoxide).
• Mice	were	fed	by	water	for	3	to	7	days.

• Normal:	water	
• Vehicle:	water	with	dimethyl	sulfoxide
• Acetamiprid:	Mospilan (100-fold	NOAEL	acetamiprid)

Animal	Study	1

Acetamiprid was also detected from control mouse!
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Acetamiprid Induces Abnormalities in Socio-Sexual and 
Anxiety-Related Behaviors of Male Mice (Sano 2016) 

• In	utero	and	lactational Exposure,	0	mg/kg	(control	group),	1.0	
mg/kg	(low-dose	group),	or	10.0	mg/kg	(high-dose	group)	

Sano et al. Developmental Acetamiprid Exposure Alters Behaviors

FIGURE 3 | Effects of developmental ACE exposure on male aggressive behavior. (A) The total duration and (B) the number of aggressive bouts toward the

intruder stimuli. The numbers of animals used are indicated in parentheses. The data are presented as the mean ± SEM. **P < 0.01, *P < 0.05.

inhibit the endogenous peroxidase activity, and then blocked
in an incubation buffer (1% casein in PBS-X) for 2 h at room
temperature. Tissue sections were then incubated with a rabbit
polyclonal anti-vasopressin antiserum (1:4000; Immunostar Cat.
#20069, Hudson, NY, USA) in incubation buffer for 24 h
at 4◦C. After the completion of the incubation process, the
staining was visualized using the DAKO EnVisionTM Detection
System (Peroxidase/DAB+, K5007). Three anatomicallymatched
sections (30 µm thickness, 90 µm intervals) containing the
paraventricular nucleus (PVN, bregma 0.70–0.94 mm) were
selected for each mouse. PVN images were photographed at a
10x magnification with a digital camera mounted on a light
microscope (Leica DFC290 HD; Leica Microsystems, Wetzlar,
Hesse, Germany). The total number of immunoreactive cells
was bilaterally counted for each animal. Because of technical
issues with the sample preservation and tissue preparation, only
the number of samples denoted in Figure 7 were used for the
analysis.

Evaluation of Behavioral Flexibility Using
the IntelliCage
Male and female mice were tested separately for their behavioral
flexibility using the IntelliCage, a fully automated testing
apparatus consisting of a large plastic cage (55 × 37.5 ×

20.5 cm) equipped with 4 corner chambers (15 × 15 × 21 cm
each). Male mice at the age of 13–20 weeks were introduced
to the IntelliCage apparatus and housed for 57 days. The
female mice were housed in the apparatus for 56 days, starting
at the age of 23–32 weeks. The difference in test timing of
test was due to the limited capacity of the IntelliCage. Two
to Three days before being introduced to the apparatus, the
mice were anesthetized with isoflurane and subcutaneously
implanted a glass-covered transponder having a unique ID code
for radiofrequency identification (Datamars, Temple, TX, USA).

The behavioral flexibility test paradigm was composed of
an acquisition phase and serial reversal phases. Prior to the
behavioral flexibility test, the mice were allowed to acclimatize
to the IntelliCage for 9 days. In the acquisition phase after
acclimatization, mice were allowed to learn the two rewarded
corners and shuttle between them. Subsequently, the mice were
subjected to serial reversal tasks, in which the diagonal spatial
patterns of the rewarded corners was repetitively reversed every

FIGURE 4 | Effects of developmental ACE exposure on female sexual

behavior. The comparison of the lordosis quotient [(the number of lordosis

responses/15 mounts or intromissions) * 100]. The numbers of animals used

are indicated in parentheses. The data are presented as the mean ± SEM.

4–7 sessions. In total, there were 57 sessions for the male
mice and 56 sessions for the female mice, including the first
14 sessions of the acquisition phase. Additional sessions were
conducted with 10 serial reversals for the male mice and 9 serial
reversals for the female mice. The percentage of visits to the non-
rewarded corners within the first 100 visits was defined as the
discrimination error rate and used to analyze the inter-session
comparisons of learning performance. Additionally, the nose-
poke frequency per visit within the first 100 visits was calculated
for eachmouse as an index of compulsive repetitive behavior. The
IntelliCage apparatus and behavioral flexibility test paradigm are
described in details elsewhere (Endo et al., 2011, 2012). The data
from session 38–41 (6th reversal phase) and session 46–53 (8th
and 9th reversal phases) in the male mice were excluded from
analysis because of a mechanical malfunction of the IntelliCage
apparatus. Thus, in the Figure 8A, the sessions 42–45, which
were the 7th reversal phase, are denoted as Rev 6 and sessions
54–57, which were the 10th reversal phase, are denoted as Rev 7.

Statistical Analyses
All data are presented as mean ± standard error of the mean
(SEM). All data, except the comparison of the numbers of
ejaculating males, were analyzed using an ANOVA, followed
by a Fisher’s PLSD post hoc test. The incidence of ejaculation
during themale sexual behavior test was compared usingχ2 tests.
The differences were considered statistically significant when P

Frontiers in Neuroscience | www.frontiersin.org 5 June 2016 | Volume 10 | Article 228

Sano et al. Developmental Acetamiprid Exposure Alters Behaviors

FIGURE 1 | Timeline of the behavioral tests in the study and information of the numbers of animals used in each cohort.

FIGURE 2 | Effects of developmental ACE exposure on male sexual behavior. Comparison of (A) the total number of sexual behaviors, as well as the numbers

for each male sexual behavior component, including (B) attempted mounts, (C) mounts, and (D) intromissions across the treatment groups. The numbers of animals

used are indicated in parentheses. The data are presented as the mean ± SEM. *P < 0.05, aP < 0.1.

at 4◦Cwith 4% PFA in 0.1M PBS, and cryoprotected in 0.1M PBS
containing 30% sucrose.

Enzyme Immunoassay for Plasma
Testosterone
Samples were extracted from plasma (100 µl) with ethyl
acetate, and testosterone concentrations were determined using a
testosterone enzyme immunoassay kit (Cayman Chemicals, Ann
Arbor, MI, USA), according to the manufacturer’s instructions.

All male samples and randomly selected samples from females
(5 for each treatment group) subjected to the socio-sexual and
anxiety behavior tests were analyzed.

Immunohistochemistry
The brain samples were coronally sectioned at 30 µm thickness
with 90 µm intervals on a freezing microtome. Sections were
incubated in PBS-X (0.1 M PBS, pH 7.2 and 0.2% Triton
X-100), containing 0.5% hydrogen peroxide for 20 min to
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Sano et al. Developmental Acetamiprid Exposure Alters Behaviors

FIGURE 5 | Effects of developmental ACE exposure on anxiety-related behaviors, as measured in the light-dark transition test. (A–C) Male and (D–F)

female mice of each treatment group. The comparison of (A,D) the total time spent in, (B,E) the total moving distance in, and (C,F) the latency to enter the light

compartment of the light-dark transition apparatus. The numbers of animals used are indicated in parentheses. The data are presented as the mean ± SEM. *P <

0.05 vs. control.

FIGURE 6 | Effects of developmental ACE exposure on plasma

testosterone levels. (A) Male and (B) female mice of each treatment group.

The numbers of animals used are indicated in parentheses. The data are

presented as the mean ± SEM.

< 0.05. All data were analyzed using the SPSS 19.0 statistical
package (SPSS Inc., Chicago, IL, USA) or R software (The R
Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Body Weight/Litter
In the male and female mice, no differences were found in
BW/litter among the groups at birth, PND 21, or 23–26 weeks
of age (Table 1).

Brain Weight
No differences were found in the brain weights of either male or
female mice at PND 21 (Table 2). There were no differences in
the brain-to-body weight ratio either [data not shown].

Brain Residual Concentration Analysis
The brain residual concentration of ACE was measured in 6 mice
(3 male and 3 female) from the control group and 6 mice (3 male
and 3 female) from the high-dose group. The concentrations
in the high-dose group were 1.29 ± 0.46 and 1.23 ± 0.20 ng/g
in males and females, respectively (Table 3). In contrast, the
concentrations were below theMDL in the control group for both
sexes.

Male Sexual Behavior
In the male sexual behavior test (Figures 2A–D), the total
number of sexual behaviors was significantly increased in the
low-dose group [F(2, 27) = 3.72, P< 0.05; Fisher’s PLSD, P< 0.05,
low-dose group vs. control and high-dose groups; Figure 2A],
particularly for the mean number of mounts [F(2, 27) = 3.77, P <

0.05; Fisher’s PLSD, P < 0.05, low-dose group vs. control group;
Figure 2C]. We found no significant difference in the incidence
of ejaculation during the tests (Table 4).

Male Aggressive Behavior
The aggression level in the low-dose group was significantly
increased compared to that of the control and high-dose groups,
as measured by the total duration [F(2, 27) = 4.44, P < 0.05;
Fisher’s PLSD, P < 0.05, low-dose group vs. control; P <

0.01, low-dose group vs. high-dose group; Figure 3A] and the
number of bouts [F(2, 27) = 6.24, P < 0.01; Fisher’s PLSD,
P < 0.01, low-dose group vs. control and high-dose groups;
Figure 3B].
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Sexual	Behavior Aggressive	behavior

• Anxiety-related	behavior,	as	measured	in	the	light-dark	transition

No	reductions	in	the	testosterone	level,	the	
number	of	vasopressin-immunoreactive cells,	
or	behavioral	flexibility

Animal	Study	2



Neo-nicotinic	symptoms	have	been		observed	in	Gunma,	
Japan,	since	2004	(Taira 2006-2014)

Neo-nicotinic	symptoms	(NNS)
Subjective	Symptoms

Headache,	General	fatigue,	
Stomachache				
Chest	pains/palpitation
Muscle	pain/weakness/spasm
Cough

Objective	Symptoms
Postural	tremor
Recent	memory	loss
Fever

Clinical	study		



• 0.02%	acetamiprid aqueous	solution	was	sprayed	to	a	height	of	
40	m	or	higher	above	the	ground, on	mountainsides	with	air	
blast	spraying	equipment,	for	pine	trees	as	a	countermeasure	
against	pine	wilt	disease.

First was Acetamiprid Spray in 2004 (Taira 2006)

マツグリーン液剤100倍希釈
1ha当たり 1.2t  
● 散布地 ● 患者
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2004 2005
Sprayed	Pesticide Acetamiprid（+OP） Acetamiprid

Sprayed	period 5.26-6.28 5.17-6.24
Acetamiprid per	area	(μg/m2) 70 45

Number	of	patients 78 63
Male/Female 20/58 18/45
Age 2-62 3-78
Under	15	years	old 32(50%) 15(26%)
Electrocardiogram findings
Heart	rate	abnormality(%) 32	(41%) 18	(29%)

Estimated exposure dose was max. 84.1μg/kg BW, 84% of ARfD
(Ichikawa 2008)

Demographic Data in 2004 and in 2005 (Taira 2014)
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In	2004	acetamiprid spray:	78	patients
In	2005	acetamiprd spray:	63	patients	

2006.8-2007.3： 1111 patients	visited

After	stop	spraying	in	2006,	pandemic	of	NNS	started.
All	of	them	became	ill	after	continuous	intake	of	tea	
beverages	and	conventional	domestic	fruits.	



• Quantified	by	LC/MS
• 6-Chloronicotinic	acid,		maximum	84.8	ng/mL

• Qualified	by	LC/TOFMS
• Acetamiprid
• 5-Hydroxy-imidacloprid
• 4,5-Dehydro-imidacloprid
• 4,5-Dihydroxy-imidacloprid
• N-Desmethyl-clothianidin
• N-(2-Chlorothiazole-5-carboxyl)-glycine

• Quantified	by	LC/MS/MS
• N-Desmethyl-acetetamiprid (DMAP),	maximum	3.2	ng/mL

We start to analyze patients’ urine.
Several neonicotinoids and metabolites were 
identified (Taira et al. 2007-2011).
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Neo-nicotinic	symptoms	(NNS)
Subjective	NNS:	headache・general	fatigue・stomachache・ chest	

pains/palpitation・muscle	pain/weakness/spasm・cough

Objective	NNS:	Postural	tremor・Recent	memory	loss・Fever

+++

TSG,	n=19

5	or	6	subjective	NNS
and

Postural	tremor(+)
and

Memory	loss	(+)

+

ASG,	n=16

1-4	subjective	NNS
or

Postural	tremor	(-)
or	

Memory	loss	(-)

-

NSG,	n=50

No	NNS	

We	conducted	prospective	case	control	study	(Marfo 2015).



Demographic data of each group

Group TSG ASG NSG P	value	
(TSG	vs.	NSG)

n 19 16 50
Sex	(M/F) 6/13 6/10 13/37 0.871
Age	(y.o.)
4-10 1 3 4
10-14 5 3 4
15-49 8 6 30
50-64 4 2 6
65- 1 2 6

mean	± SD 33.4	±
21.0

30.9	±
23.0

39.3	±
20.1

0.287

min-max 5-69 5-78 4-87
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Recent memory loss diagnosed by food diary
Case	A:	11	years	old	female	could	not	recall	what	she	ate	for	
lunch	two	days	ago	or	before;	and	DMAP	was	quantified	at	3.6	
nmol/mmol Cr	in	her	urine.

S5 Fig. Representative questionnaires on recent meals.  

Recent memory loss (+): The patients could not fill out contents of meals in the previous three days. 
 
Case A: 11 years old female could not recall what she ate for lunch two days ago or before; and DMAP was 
quantified at 3.6 nmol/mmol Cr in her urine. 

 

Case B: a 62-year-old female could not recall what she ate for dinner two or three days ago or lunch three days 
ago; and thiamethoxam (0.24 nmol/mmol Cr) and nitenpyram (0.54 nmol/mmol Cr) were quantified in her urine. 

 
 
Recent memory loss (−): The patients could fill out contents of meals in the previous three days. 
 
Case C: an 11-year-old female.  

 

Case D: a 50-year-old male skipped breakfast two days ago and remembered it. 

Meal 3 days before 2 days before 1 day before 

The first  
 

 Rice, tea 

The 
second 

 
 

 Rice, milk 

The third  
 

Isotonic water, 
meat dumpling 

Rice, tea 

Meal 3 days before 2 days before 1 day before 

The first  Bread, banana, 
cheese, natto, 
milk 

Bread, banana, 
cheese, natto, 
milk 

Banana, cheese, milk 

The second  Bean-jam bun, 
milk 

Rice, pot cooking, 
boiled vegetable, milk 
coffee 

The third    Sushi, malinard 
salmon, grilled squid, 
strawberry 

Meal 3 days before 2 days before 1 day before 
The 
first  

Rice, grilled egg, 
milk 

Rice, sausage, 
milk, grilled 
egg 

Rice, milk, grilled egg 

The 
second 

Buckwheat noodle, 
milk 

Grilled beef 
rice, milk 

Buckwheat noodle, 
yogurt drink 

The 
third  

Rice, grilled beef, 
milk 

Rice, milk, 
vegetables, tuna 
&Welsh onion 

Curry and rice 

Meal 3 days before 2 days before 1 day before 

The 
first  

Grilled egg, miso 
soup, pickles 

Skipped Rice, miso soup 

The 
second 

Chinese noodle, corn 
bread, coffee 

2 piece of rice 
cake, miso soup 

Chinese noodle, 
a rice ball 

The 
third  

Oden (radish, 
konnyaku), canned 
salmon, beans sprout 
salad, fried tofu, spirit 

Grilled squid, 
dried tofu, 
komatsuna, miso 
soup, bier, spirit 

Fried ham, 
salad, fried 
pepper, grilled 
tofu, yuba 

Case	B:	11	years	old	female	without	neo-nicotinic	symptoms

S5 Fig. Representative questionnaires on recent meals.  

Recent memory loss (+): The patients could not fill out contents of meals in the previous three days. 
 
Case A: 11 years old female could not recall what she ate for lunch two days ago or before; and DMAP was 
quantified at 3.6 nmol/mmol Cr in her urine. 

 

Case B: a 62-year-old female could not recall what she ate for dinner two or three days ago or lunch three days 
ago; and thiamethoxam (0.24 nmol/mmol Cr) and nitenpyram (0.54 nmol/mmol Cr) were quantified in her urine. 

 
 
Recent memory loss (−): The patients could fill out contents of meals in the previous three days. 
 
Case C: an 11-year-old female.  

 

Case D: a 50-year-old male skipped breakfast two days ago and remembered it. 
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Rice, tea 
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Rice, pot cooking, 
boiled vegetable, milk 
coffee 

The third    Sushi, malinard 
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milk 

Rice, milk, 
vegetables, tuna 
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Meal 3 days before 2 days before 1 day before 

The 
first  

Grilled egg, miso 
soup, pickles 

Skipped Rice, miso soup 

The 
second 

Chinese noodle, corn 
bread, coffee 

2 piece of rice 
cake, miso soup 

Chinese noodle, 
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Oden (radish, 
konnyaku), canned 
salmon, beans sprout 
salad, fried tofu, spirit 
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Food intake reported by patients
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Onset-First visit days (upper) & First visit-remission days (lower)
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• Neonicotinoids are highly soluble to polar solvent.
• High value of acetone/water coefficient may predict 

accumulation in some part of body.
• Imidacloprid has moderate affinity with albumin and 

hemoglobin (Ding 2015)
Solubility (g/L) Water Octanol	 Acetone Kaw
Thiamethoxam 4.1 0.62 48 12
Clothianidin 0.327 1.64 15.2 46
Acetamiprid 2.95	 18.5 >200 68
Imidacloprid 0.48 0.78 47 98
Thiacloprid 0.185 3.36 64 346
Nitenpyram 840 192 290 0.35
Dinotefuran 40 58 1.5
Sulfoxaflor 5.7 36.0 217 38

Flupyradifurone 3.2 250 78
US	EPA	Fact	Sheet.	2002;2003;2004,	NPIC	2012,	Federal	Resist	78:18512

Toxicokinetics study	1



Urinary excretion of imidacloprid and acetamiprid is slow
(5μg oral, M/F=5/5, Harada 2016).

r：Area	under	the	curve	(AUC),	proportion	excreted	in	urine

Design Bio-
availability r T 1/2α	(day) T	1/2β	(day)

Imidacloprid adult 0.13 1.45

rat	blood(M/F) 100% 0.11/0.14 4.91/1.66

Clothianidin adult 0.60 0.58

rat (M/F) 89.2% 0.05/0.06 2.25/0.94

Dinotefuran adult 0.90 0.17

rat (M/F) 98.5-98.9% 0.15/0.33

dm-Acetamiprid adult 0.59 0.23 1.65

rat	(M/F) 100% no data no	data

Toxicokinetics study	2



Plausible	Neonicotinoid Toxicokinetics

2nd Peripheral	
Compartment	
(	polar	tissue,	
e.g.	nAChRs)

Central	
Compartment

1st Peripheral	
Compartment	
(e.g.	Alb,	Hb)

Neonicotinoids in	Food,	Beverage,	and	Air

Imidacloprid:	urine,	feces,	hair
N-Desmethyl-acetamiprid:	urine,	feces
Clothianidin:	urine,	feces
Dinotefuran:	urine

Moderate	affinity:	104	M-1High	Kaw:	98

RapidSlow



Detection rates of urinary neonicotinoids are increasing in 
Japan (Ueyama 2015). That of 3 y.o. is 58% (Osaka2016)

quantification of NEOs and DAPs in urine samples collected
from adult females between 1994 and 2011 in Japan.

■ MATERIALS AND METHODS
Study Subjects. Local residents in Kyoto and surrounding

areas in Japan who attended any of the cross-sectional
healthcare checkup programs conducted in 1994, 2000, 2003,
2009, and 2011 were asked to donate a spot urine specimen to
the Kyoto University Human Specimen Bank.25 After being
stored at −80 °C, the urine specimens analyzed in the present
study (n = 17−20 different individuals in each year) were
randomly sampled from the Bank using statistical software JMP
Pro 11 (SAS Institute Inc., Cary, NC) on the basis that they
were collected from women 45−75 (59.8 ± 8.3, mean ± SD)
years old with no occupational histories related to pesticide
exposure. Thus, the subjects were more likely exposed to
pesticides from their diet and drinking water than directly from
their surrounding environment. Specimens from males were
not included because subjects of the same age range were not
available during the period. The Ethics Committees of the
Nagoya University Graduate School of Medicine, Kyoto
University Graduate School of Medicine, and Nagoya City

University Graduate School of Medical Sciences approved the
study protocol.

Urinary NEOs and DAPs Analyses. Concentrations of
NEOs and DAPs in urine were measured according to the
methods reported previously.16,19 Briefly, one milliliter of urine
was pipetted into a test tube containing 1 mL phosphate
solution (2%) and 10 μL internal standard (I.S.) (5 mg/L
cotinine-d3 for NIT and 10 mg/L acetamiprid-d6 for the other
NEOs). The sample was applied to a solid phase extraction
(SPE) procedure (Bond Elut PCX; Agilent Technologies, Santa
Clara, CA). ACE, IMI, THD, THM, CLO and DIN were eluted
with 0.5 mL methanol. NIT was eluted with 0.5 mL methanol
and acetonitrile (1:1, v/v) containing 5% NH3. Each eluate was
injected into liquid chromatography with tandem mass
spectrometry (LC−MS/MS). The LC−MS/MS was composed
of Agilent 1200 infinity LC coupled with an Agilent 6430 Triple
Quadrupole LC/MS System (Agilent Technologies). In the
measurement of four DAPs, i.e., DMP, DMTP, DEP, and
DETP, 1 mL of urine was pipetted into a test tube, and 1 mL
distilled water, 20 μL formic acid and 20 μL I.S. (30 mg/L DMP
sodium salt-d6, 30 mg/L DMTP potassium salt-d6, 5 mg/L DEP
ammonium salt-d10 and 5 mg/L DETP potassium salt-d10) were

Figure 1. Detection rates of urinary NEOs in Japanese (A) and the amount of domestic shipments of NEOs in Japan (B) between 1994 and 2011.
Inverted triangles represent years when each NEO came on the market in Japan. Panel A shows p for the Cochran-Armitage trend test, Pearson’s
correlation coefficients (r) with p-values, and 95% confidence intervals of the regression lines.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b03062
Environ. Sci. Technol. 2015, 49, 14522−14528
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Epidemiological	study	1	



Autism	and	imidacloprid,	a	common	flea	and	
tick	treatment	for	pets (Keil 2014)

• CHARGE (Childhood Autism Risks from Genetics and 
Environment) case-control study in CA, completed before 2011.

• The association between imidacloprid exposure and ASD 
warrants further investigation.

• This work highlights the need for validation studies 
regarding prenatal exposures in ASD. 

Epidemiological	study	2	

fetus is unknown [49], and no known studies have exam-
ined potential neurotoxic effects of imidacloprid on the
human fetus. We did not have data on how much physical
contact the mother had with the pet that was treated.
Case control studies utilizing self-report to identify

exposures of interest are prone to differential exposure
misclassification that can lead to bias. The CHARGE
Study utilizes maternal recall of household pesticide use
from, on average, 4 years in the past; independent assess-
ment of household pesticide exposures was not feasible.
Bayesian methods to correct for exposure misclassification
can sometimes circumvent these shortcomings, but the
results are sensitive to assumptions about the magnitude
and precision of misclassification of the exposure.
As shown in Table 2, adjusted frequentist models and

naïve Bayesian models agree that there is no appreciable
difference in exposure between children with ASD and
TD children, providing remarkably similar point estimates
and precision. An elevated risk associated with exposure
is, nevertheless, suggested by the susceptibility window
analysis in Figure 1, and the doubling of odds for con-
sistent users of imidacloprid-containing pet products. In
addition to signifying a possible etiologic relationship, this
elevation in reported imidacloprid use during pregnancy
is also consistent with a) a mitigating factors such as small
sample size or bias due to confounding or b) recall bias
arising from (for example) concerns about prenatal expo-
sures in which improved reporting or over-reporting of

Fetal/child age

O
dd

s 
R

at
io

, 9
5%

 C
I

Pre 3rd 1−2yrs 2−3yrs

Pregnancy Childhood0.5

1.0

1.5

2.0
2.5
3.0
3.5
4.0

Figure 1 Adjusted odds ratios and 95% confidence intervals
comparing imidacloprid exposure of children with autism
spectrum disorder with typically developing controls from the
CHARGE data. Estimates are from separate frequentist, unconditional
logistic models for each time period. All models were adjusted for
child’s sex, regional center of birth, and age, maternal education, race/
ethnicity, and parity and pet ownership during the prenatal period.
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Figure 2 Adjusted odds ratios and 95% confidence intervals comparing imidacloprid exposure of all children with an autism spectrum
disorder (ASD) to that of typically developing (typically developing) controls. This sensitivity analysis varies sensitivity (Sens) and false
positive probability (FPP, 1-specificity) priors used in the Bayesian models assuming known exposure misclassification (certain misclassification
models). Models are broken into four groups; 1: sensitivity and FPP are greater among controls; 2: sensitivity and FPP are equal between cases
and controls (non-differential misclassification); 3: sensitivity and FPP are greater among cases; 4: sensitivity greater among cases, FPP is equal
between cases and controls.

Keil et al. Environmental Health 2014, 13:3 Page 6 of 10
http://www.ehjournal.net/content/13/1/3

Adjusted	odds	ratios	and	95%	confidence	
intervals	comparing	imidacloprid	exposure	
of	children	with	autism	spectrum	disorder	
with	typically	developing	controls	from	the	
CHARGE	data.



Other	studies	in	CA,	San	Joaquin	Valley

• Children	who	was	born	from	1997	to	2006	
• Examined	the	mothers	exposed	to	neonicotinoids	within	a	
500	m	radius	of	their	address	during	a	3-month	
periconceptional window,	and	not	exposed.

• Congenital	heart	defects	(Carmichael	et	al.	2014)
• 101	Tetralogy	of	Fallot and	785	non-malformed	controls
• Adjusted	Odds	Ratio	(95%	CI)	was	2.4(1.1–5.1)	

• Anencephaly	(Yang	et	al.2014)
• 73	anencephaly	and	785	non-malformed	controls
• Adjusted	Odds	Ratio	(95%	CI)	was	2.5	(0.9–7.1)	

Epidemiological	study	3	



Process	of	Pesticide risk management
1. Collect	evidence	

l case	study,	case	report,	
l animal	study,	laboratory	data,	structure	activity	
correlation

2. Find	dose	response	relationship
l Acute	Reference	Dose	(ARfD,	single	dose)
l Acceptable	Dose	of	Intake	(ADI,	speed)

3. Evaluate	the	level	of	exposure	
4. Assess	the	risk

WHO classified pesticide by acute toxicity in 2009.
However, appropriate ADI setting may also protect
children from the hazard of pesticides.

Regulation



Lowest-observed-adverse-effect	level	(LOAEL)	of	
neonicotinoids	in	human	study

Neonicotinoid Exposure	 Dose
(μg/kg) Matrix Level

(μg/L)

Current	
ADI

(μg/kg)

Imidacloprid Acute 8300 Blood 3 57

dm-Acetamiprid Chronic	 Urine <	0.6 71
Thiamethoxam Chronic Urine <	0.3 18

• Imidacloprid acute intoxication (Tamura 2002)
• 95 y.o. male, entubated, gastric lavage in ER
• 2% formula 25 mL, oral (8300 μg/kg)
• LOAEL = 8300 μg/kg
• ARfD = 8300/10/10=83 μg/kg
• ADI = ARfD/10 = 8.3 μg/kg = <15% of current ADI



Why	urinary	excretion	is	low	in	chronic	exposure?

2nd Peripheral
>3〜300

2nd Peripheral
30

Central
3	

Central
0.3

1st Peripheral
30

1st Peripheral
300	

Acute	exposure

Chronic	exposure	

Urine

Urine



What	we	can	do	to	reduce	environmental	
neonicotinoids	exposure?

• Reduce	ADI?
• Share	ADI	with	all	neonicotinoids?
• Ban	all?
• Restrict	the	application?	
• Stop	seed	treatment	by	neonicotinoids?
• Use	alternatives?
• Go	organic	for	sustainable	agriculture?

• It is the time we stop the challenge test on child brain.



Conclusion
l Recent	animal	studies	and	in	vitro	studies	suggest	neonicotinoids
may	cause	neurodevelopmental disorders.

l We have several	human evidence	about	the health effect of
neonicotinoid by	environmental	exposure.

l Acceptable	Dose	of	Intake	of	neonicotinoids	needs	to	be	revised	
to	protect	children	from	neurodevelopment	disorders.
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