Inhomogeneous Wireless Network Load Distribution

Kuang-Hui Chi* Meng-Hsuan Chiang Institute of Electrical Engineering National Yunlin University of Science and Technology TAIWAN *chikh@yuntech.edu.tw*

Aug. 2015

Background (1/3)

Observations

- Network inhomogeneity appears common as devices of different generations/capabilities were phased in over time
- Households may deploy IEEE 802.11n access points (APs) with joint use of earlier WiFi apparatus

IEEE 802.11g

IEEE 802.11b

((**ٻ**))

IEEE 802.11n

- Varying coverages, capabilities, and service rates affect how a wireless station selects which AP to associate with
 - Ioad imbalance
- Traffic may concentrate on less capable APs unevenly

Background (2/3)

- Objectives
 - Distribute traffic among inhomogeneous APs for users
 - Implementation over Android, add-on software, an APP

Operation synopsis

- APs of different generations deployed in an area where a server is introduced to collect user's grade points or other relevant information
- A grading method allows for how long an Android handset used each type of AP in the past
- Connection time is considered plus or minus with respect to an IEEE 802.11b AP and 802.11n AP (newest)
 - 802.11b (slower) < 802.11g (fair) < 802.11n (faster)

Background (3/3)

Operation synopsis (cont'd)

- Connection time is considered plus or minus with respect to an IEEE 802.11b AP and 802.11n AP (newest)
 - The longer a handset was with an IEEE 802.11b AP, the more points it gains, in favor of its eligibility to connect to an IEEE 802.11n AP later
 - The longer the handset was with an IEEE 802.11n AP, the more advantage it loses, making it less likely to use the IEEE 802.11n again in the future
- Based on the ranking of grade points, the appropriate AP is chosen for each wireless user to camp in

Literature Review: Summary

- State-of-the-art research did not address network inhomogeneity
 - Performance limited somehow
 - Per-AP capability not fully utilized
- Most schemes require tailoring standard protocol machinery on the AP side or client side
 - Incompatible with standard devices
 - Propreitary, interoperability?

Selection of Most Recent Work

K.-H. Chi and L.-H. Yen, "Load Distribution in Non-homogeneous Wireless Local Area Networks", *Wireless Personal Communications*, 75(4):2569–2587, April 2014

Information exchange: An example

(a) Both APs J and K send the station *i* a Probe Response (step 1), record the information in their respective association tables (step 2) and broadcast the recorded information to the LAN (step 3.) This enables association tables at different sites to accumulate same entries.

Selection of Most Recent Work

K.-H. Chi and L.-H. Yen, "Load Distribution in Non-homogeneous Wireless Local Area Networks", *Wireless Personal Communications*, 75(4):2569–2587, April 2014

Information exchange: An example

(b) AP J accepts and sends the station i an Association Response (step 4), resets the entry with index (i,J) to have infinite Expiration Time (step 5), and broadcasts the event of association to the LAN. Upon receipt, APs update the corresponding entry accordingly in their maintained tables (step 7.)

Selection of Most Recent Work

K.-H. Chi and L.-H. Yen, "Load Distribution in Non-homogeneous Wireless Local Area Networks", *Wireless Personal Communications*, 75(4):2569–2587, April 2014

Suppose:

- A new station *i* detects a set of APs in range
- For each such AP J, S_J denotes the set of stations local to J
- Responsiveness
 - J might take a delay of $\sum_{i \in I}$

$$\sum_{S_j} 1/\mu(r_{j,j})$$
 to serve all the potentially

contending stations for a frame unit

μ(): function mapping RSS to nominal transmission rates

Fusing metrics

Effective bandwidth for a station <u>increases with a stronger</u> <u>RSS</u> but <u>decreases with slower responsiveness</u> of APs, the preference for *i* associating with *J* is

$$\mu(r_{i,J})(\sum_{j\in S} 1/\mu(r_{j,J}))^{-1}$$

• A best-fit AP is given by $\arg \max_X \mu(r_{i,X}) (\sum_{\forall i \in S_{i}} \frac{1}{\mu(r_{j,X})})^{-1}$ 8

Our Approach - centralized -

Our Approach (1/4)

Our Approach (3/4)

Grading policy

AP type	802.11b	802.11g	802.11n
Update principle	Points increase with connection duration	Neutral	Points decrease with connection duration
Points adjustment	1*(connection duration) (s)	Invariant	<pre>(-1)*(connection duration) (s)</pre>

	90:21:55:DD:9B:E3 9961	
Our Approach (4/4)	00:1F:3C:8A:CD:91 9950	802.11n
Ranking of grade points	00:1F:3C:8B:13:10 9942	802.11g
Use Iperf to test the max.	00:1F:3C:8B:14:F4 9930	802.11b
 Bandwidth ratio of a conc available bandwidth) 802.11n: 31.5 Mbps; 31.5 802.11g: 19.3 Mbps; 19.3 802.11b: 5.8 Mbps; 5.8/5 	/56.6 = 0.34	
Such ratios multiplied by <u>stations</u> (WSs) give a mod	the <u>total number of wireless</u> derate share of stations to be AP (<i>room</i>), with preference 1b 26 (802.11n)	
 Handset with highest point 	int associates to the 802.11n AP, 2 nd	

highest to 802.11n or 802.11g and so forth, depending on the room offered by each AP

Experiments (1/3)

Scenario

- Wireless stations join one by one (up to 4), at time 0, 10, 25, and 45
 - All the APs in radio range

WS 1 connected to IEEE 802.11n AP

WS 1 90:21:55:DD:9B:E3 10000 802.11n

After 10s, WS 2 joins, disconnect WS 1 and re-start WSs 1's connection

WS 200:1F:3C:8A:CD:91 10000802.11nWS 190:21:55:DD:9B:E39990802.11g

After 15s, WS 3 joins, disconnect WSs 1 and 2, and let both WSs re-start connections

WS 3	00:1F:3C:8B:13:10	10000	802.11n
WS 1	90:21:55:DD:9B:E3	9990	802.11n
	00:1F:3C:8A:CD:91		

Field tests ensure our scheme operates as expected

Performance

Use Iperf and Iperf for Android

Measure throughput between the server and clients

🚣 JPerf 2.0.2 - Net	work performanc	e measurement grap	phical tool		фŶ	🛜 📶 🗺 下午 3:15
JPerf						
Iperf command:	Please enter the	host to connect to		Run IPerf!	iPerf	
Choose iPerf Mode:	Olient	Server address	Port 5,001 🚔		開啟 Device I	P address: 192.168.1.34
		Parallel Streams	1 💌	Stop IPerf!		D (spade)
	🔘 Server	Listen Port	5,001 🔶 🗌 Client Limit		WLAN: U	Jnknown
		Num Connections	0 *		-c 140.125.20	0.83 -w 64k -t 600 -i 1 -P
Application laye		8		Fri, 8 Jul 2011 07:46:02	1	
Application laye	er options	8	Bandy	width		
🗾 Enable Compa	tibility Mode		1.0			3.75 MBytes 31.5 Mbits/sec
Transmit		10 🌲	0.9		[12]15.0-16.0 sec	3.62 MBytes 30.4 Mbits/sec
	💮 Bytes 🛛 💿 Se	conds	0.8			3.75 MBytes 31.5 Mbits/sec
Output Format	KBits .	-	€ 0.6		[12] 18.0-19.0 sec	3.75 MBytes 31.5 Mbits/sec
Report Interval		1 🚔 seconds	₩ 0.8 ₩ 0.8 ₩ 0.5 ₩ 0.4			3.75 MBytes 31.5 Mbits/sec
Testing Mode	🔲 Dual 📄 Tr	ade	≣ 0.4			3.62 MBytes 30.4 Mbits/sec
	test port	5,001 🚔	0.3		[12] 21.0-22.0 sec	3.62 MBytes 30.4 Mbits/sec
Representative File			0.2		[12] 22.0-23.0 sec	3.38 MBytes 28.3 Mbits/sec 3.62 MBytes 30.4 Mbits/sec
Print MSS			0.0			3.75 MBytes 31.5 Mbits/sec
			-19 -18 -17 -16 -15 -14 -13 -12 -11 -10	-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1		3.50 MBytes 29.4 Mbits/sec
Transport layer	ontions	8	A.Y.	Time		3.75 MBytes 31.5 Mbits/sec
	-		Output			3.75 MBytes 31.5 Mbits/sec
Choose the protoco	of to use					3.62 MBytes 30.4 Mbits/sec
TCP		-			[12] 29.0-30.0 sec	3.75 MBytes 31.5 Mbits/sec
📄 Buffer Lengt	h 2	MBytes 🚽				3.62 MBytes 30.4 Mbits/sec 3.50 MBytes 29.4 Mbits/sec
TCP Window	Size 56	KBytes 👻			[12] 32.0-33.0 sec	3.62 MBytes 30.4 Mbits/sec
📄 Max Segmen	t Size 1	KBytes 🚽			[12] 33.0-34.0 sec	3.75 MBytes 31.5 Mbits/sec
🔄 TCP No Dela	у				[12] 34.0-35.0 sec	3.62 MBytes 30.4 Mbits/sec
						3.75 MBytes 31.5 Mbits/sec
O UDP			T Save Clear now	Clear Output on each Iperf Run	[12]36.0-37.0 sec	3.62 MBytes 30.4 Mbits/sec

Summary

- Load sharing among capability-varying APs has been shown effective
 - ► Overall throughputs ↑
 - Respective throughputs also increase significantly
 - Iperf server co-located at the IEEE 802.21 Information Server
 - Can be refined to operate in a distributed manner
- Future
 - May use SNMP to collect statistics from APs
 - May use other utility software to exaperformance variation (Qcheck)
 - Use Sikuli to adjust AP's room according to load dynamics

Q & A Thank You

For any questions, please contact chikh@yuntech.edu.tw