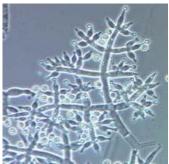


Molecular characterization of *Trichoderma* isolates as biological control agent

Khalid Abdel-lateif Menoufia University, Egypt


Why we need biological control?

- Chemical pesticides
 - Implicated in environmental and human health problems
 - Require yearly treatments and expensive
 - Toxic to both beneficial and pathogenic species
- Biological control agents
 - Non-toxic to human and animal
 - Not polluted
 - Host specific
 - Only effect one or few species

Trichoderma spp.

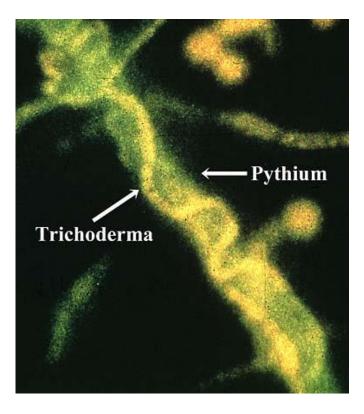
- *Trichoderma spp.* are present in nearly all agricultural soils
- Agriculturally used as biocontrol agent and as a plant growth promoter
- *Trichoderma* species exhibited effective antagonism of different degrees against wide range of soilborne plant-pathogenic fungi such as *Pythium*,

Rhizoctonia, Fusarium and Sclerotina

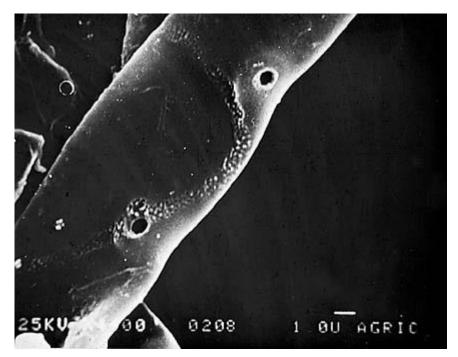
Mechanisms of *Trichoderma* as biological control agent

• Mycoparasitism

Trichoderma penetrates into pathogen mycelium by degradation of its cell wall


• Antibiosis

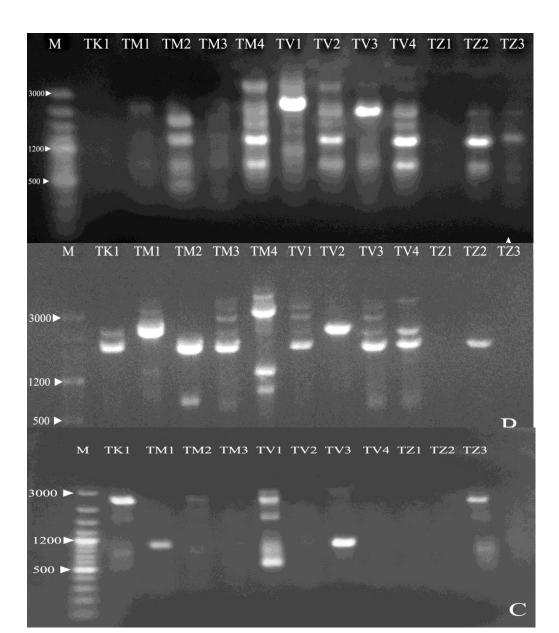
By secretion of antibiotics

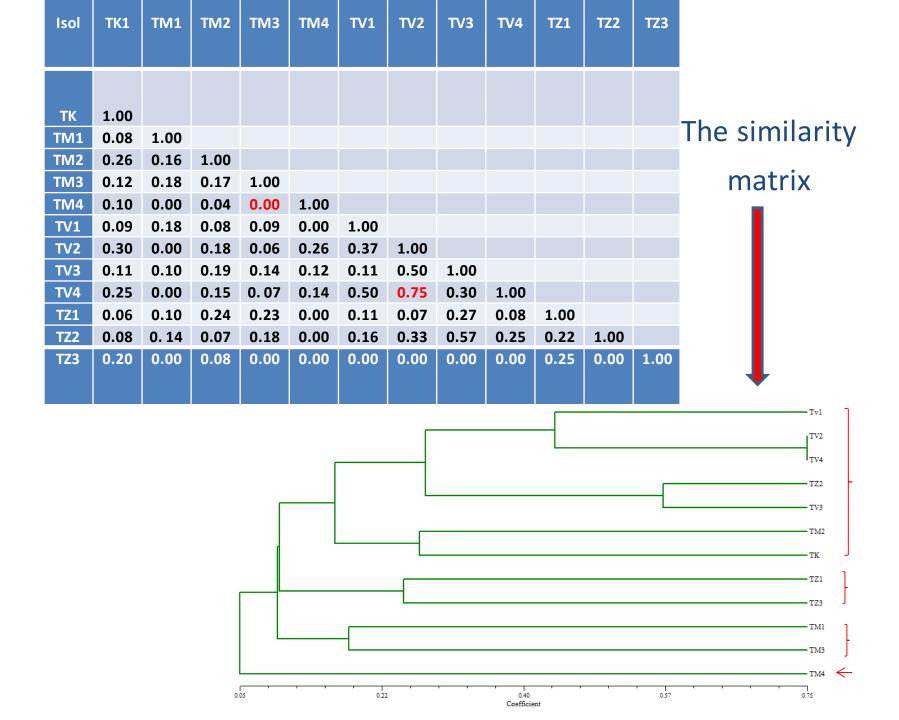

- Competition for nutrients or space
- Induced resistance
- Inactivation of the pathogen's enzymes

Action of Trichoderma against pathogenic fungi

1- Attachment to the host hyphae by coiling

2- Penetrate the host cell walls by secreting lytic enzymes: Chitinases, Proteases, Cellulases



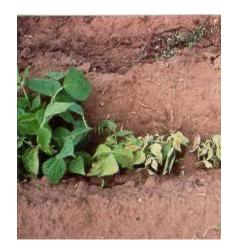

Isolation and identification of *Trichoderma* isolates

<i>Trichoderma</i> isolates	Code	Isolation source
T. koningii	ТК	Ismailia governorate
T. hamatum1	TM1	Menoufia governorate
T. hamatum2	TM2	Menoufia governorate
T. hamatum3	TM3	Gharbia governorate
T. hamatum4	TM4	Sharkya governorate
T. viride 1	TV1	Gharbia governorate
T. viride 2	TV2	Kafer El-shikh governorate
T. viride 3	TV3	Sharkya governorate
T. viride 4	TV4	Menoufia governorate
T. harzianum 1	TZ1	Sharkya governorate
T. harzianum 2	TZ2	Ismailia governorate
n according to Elad <i>et al.</i> , 1981 <i>F. HORIZIANUM 3</i> cation according to Barnett (1998	TZ3 and Bisse	Menoufia governorate

Genetic diversity based PCR-RAPD

Primer	Sequence			
OPA-02	5'-TGCCGAGCTG-3'			
OPB-07	5'- GGTGACGCAG-3'			
OPB-08	5'-GTCCACACGG-3'			
OPB-09	5'-TGGGGGACTC-3'			
OPB-18	5'-CCACAGCAGT-3'			
OPB-19	5'-ACCCCCGAAG-3'			
OPG-04	5'-AGCGTGTCTG-3'			
OPG-07	5'-GAACCTGCCC3-3'			
OPE-04	5'- GTGACATGCC-3'			
OPF-06	5'-GGGAATTCCC-3'			

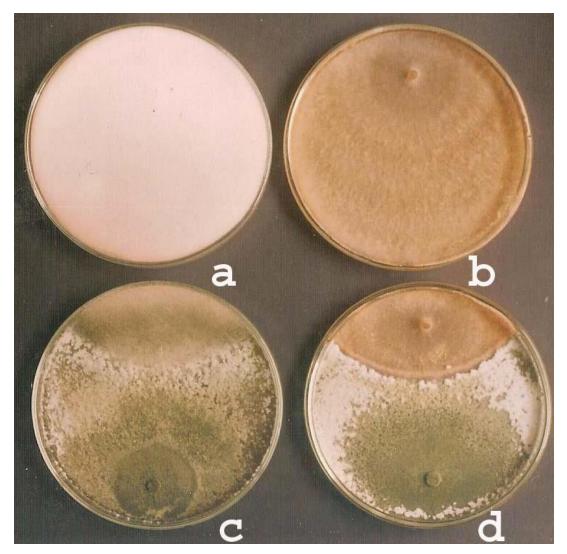
Evaluation of *Trichoderma* Antagonism against some soil porne pathogens


- Pythium aphanidermatum:
 - Cellulose is the main cell wall component

- a wide host range and cause damping off (kill seeds or seedlings before or after they germinate)

• Rhizoctonia solani:

- Chitin is the main cell wall component
- Cause various plant diseases such as collar rot and damping off .



Evaluation of *Trichoderma* Antagonism against *P. aphanidermatum* and *R. solani*

The antagonism of *Trichoderma* was evaluated by determined three criteria:

- Radial growth inhibition by comparing radial growth of *Trichoderma* against growth of pathogen (R1 - R2)/R1 × 100
- Over growth ability was calculated as mycelial growth of *Trichoderma* over the pathogen
- Inhibition zone was measured by observation the clear zones formed between *Trichoderma* and pathogen as result of antibiotic secretion

Inhibition of *P. aphanidermatum* and *R. solani* growth in presence of *Trichoderma*

a; Pythium aphanidermatum, b; Rhizoctonia Solani, c; Trichoderma against Pythium aphanidermatum, d; Trichoderma against Rhizoctonia Solani

	Radial growth inhibition(%)		Over growth (mm)		Inhibition zone	
Isolates	P. aphnidermatum	R. solani	P. aphnidermatum	R. solani	P. aphnidermatum	R. solani
ТК	$64.4^{d} \pm 1.1$	$60.7^{e} \pm 1.5$	$17.7^{bcd} \pm 1.5$	N	Ν	+
TM1	$71.4^{b}\pm0.0$	$67.6^{abc} \pm 0.6$	$17.3^{cd}\pm0.6$	Ν	Ν	+
TM2	$67.4^{c} \pm 1$	$64.7^{d} \pm 0.6$	$18^{bc} \pm 1$	Ν	Ν	+
TM3	$66.9^{c} \pm 1.3$	$55^{\mathrm{f}} \pm 1$	$18^{bc} \pm 1.5$	Ν	Ν	+
TM4	$70.4^{b} \pm 1.7$	$70.4^{ab} \pm 1.7$	$20^{a} \pm 1$	Ν	Ν	+++
TV1	$71.2^{b} \pm 0.2$	$68.1^{abc} \pm 0.2$	$18^{bc} \pm 0.6$	Ν	Ν	++
TV2	$71.3^{b}\pm0.2$	$69.3^{ab}\pm0.6$	$18^{bc}\pm0$	Ν	Ν	+++
TV3	$66.6^{c} \pm 0.7$	$66.^{3c} \pm 0.6$	$17^{cd} \pm 1.7$	Ν	Ν	+
TV4	$72.1^{b}\pm1.8$	$69^{ab} \pm 1$	$18^{bc}\pm0$	Ν	Ν	++
TZ1	$72.2^{b} \pm 1.8$	$67.2^{bc} \pm 0.8$	$19.3^{ab}\pm.2$	Ν	Ν	++
TZ2	$78^{a} \pm 1.5$	$73^{a} \pm 1$	$16^d \pm 2$	Ν	Ν	+++
TZ3	$72.3^{b} \pm 1.6$	$67.7^{abc} \pm 1.2$	$17.3^{cd} \pm 0.6$	Ν	Ν	++

No over growth of trichoderma on R. Solani No inhibition zones were observed between trichoderma and P. aphnidermatum

Conclusion

- PCR-based RAPD techniques are useful tool to cluster, verify, and prove taxonomy morphologybased data
- The isolates of *Trichoderma harizianum* and *Trichoderma viride* were the most active against *R.Solani* and *P. aphnidermatum*

Future working

- *Trichoderma* contain a large number of genes which allow biocontrol to occur
- Trying cloning certain genes from *Trichoderma* and introduce them into plants to obtain crops resistant to plant diseases

THANK YOU