About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly iournals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science \& technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

FSI \& Flutter Analysis of a Solar Powered HALE UAV

Dr. Kevin R. Anderson*, Mr. Sukwinder Singh*, Mr. Steve Dobbs**, Dr. Donald Edberg**, California State Polytechnic University at Pomona
*Department of Mechanical Engineering
Non-linear FEA/CFD Multiphysics Lab Rm. 17-2236, Bldg. 17
**Department of Aerospace Engineering
Presented at
Mech Aero 2015, San Francisco, CA

Introduction

- Problem Statement
- Model Set-up
- Free Vibration Analysis
- Forced Vibration Analysis
- Fluid Structure Interaction (FSI)
- Flutter Analysis
- Conclusions
- Future Work

Problem Statement

- Achieving a 24/7 HALE (High Altitude Long Endurance) UAV Solar drone
- Can be used for defense services to gather intel or to perform stealth reconnaissance
- Can be used for agricultural GPS related studies to enhance water resource management
- Use of embedded actuators in wing of UAV to aid in the flight
- Solar Panels are installed on the airfoils to power the aircraft using super capacitors to store and power the battery during the day time
- Vibration based generators (embedded actuators) can be used to power the aircraft by utilizing the vibrational motion of the airfoil, those vibrations can be forced or unforced for e.g. buffeting or using shakers to induce controlled vibrations on the airfoil

Problem Statement

- UAV using solar cells assisted with embedded actuators (vibration generators) enabling $24 / 7$ flight times
- The vibration generators can be positioned inside the wing at various locations to be excited by gusts and control surface pulses to produce structural vibrations to produce power to the aircraft storage devices
- In order to aid the further design of UAV with embedded actuators, a FEM based flutter analysis study has been carried out and is presented in this paper
- This current Mech Aero 2015 presentation refers to the work of
- Anderson et al., July 2015
- Singh, et al. 2015
- Anderson et al. 2016
- Anderson et al. Sep. 2015

Model Set-up

- Geometry and Mesh

ANSYS wing geometry

- UAV Wing span $=10 \mathrm{ft}$ 1ooK Tet elements,

Min. Size 12 mm

Flutter Analysis

Free Vibration Analysis NUSXS Model Setup

Properties of Outline Row 4：Mylar		－ $7 \times$			
	A	B	C	D	E
1	Property	Value	Unit	（	P，
2	Density	1.39	$\mathrm{g} \mathrm{cm}{ }^{\wedge}-3 \quad$－	\square	\square
3	\square Isotropic Elasticity			回	
4	Derive from	Young＇s Modulus．．．			
5	Young＇s Modulus	2800	MPa －		回
6	Poisson＇s Ratio	0.37			\square
7	Bulk Modulus	$3.5897 E+09$	Pa		\square
8	Shear Modulus	$1.0219 E+09$	Pa		回

Table 1 Elastic properties for Mylar

Property	Value
Density	$1.39 \mathrm{~g} / \mathrm{cm}^{3}$
Young＇s Modulus	2800 MPa
Poisson＇s Ratio	0.37
Bulk Modulus	$3.5897 \times 10^{9} \mathrm{~Pa}$
Shear Modulus	$1.0219 \times 10^{9} \mathrm{~Pa}$

Free Vibration Analysis

Free Vibration Analysis

> Torsional Modal Shape with lumped mass at location 1, 26.43 Hz

Torsional Modal Shape with lumped mass at location 2 . 27.814 Hz

Forced Vibration Analysis

- Configuration scenario I for actuators

Deformation and mode shapes for $5^{\text {th }}$ torsional mode

Table 1 Asymmetric excitation first case study

Mode	Frequency (Hz)	Max. Deflection (mm)
1	11.81	62.853
2	11.822	62.896
3	58.045	78.066
4	58.161	78.289
5	93.707	71.617
6	95.121	72.751
7	149.18	85.073
8	149.6	86.696
9	233.59	108.38
10	239.9	109.27

Forced Vibration Analysis - Configuration scenario II for actuators

Mesh and actuator placement

Table 2 Asymmetric excitation second case study

Deformation and mode shapes for $6^{\text {th }}$ torsional mode

Forced Vibration Analysis - Configuration scenario III for actuators

Mesh and actuator placement

Table 3 Asymmetric excitation second case study

Mode	Frequency (Hz)	Max. Deflection (mm)
1	11.538	61.575
2	11.539	61.567
3	57.395	74.413
4	57.457	74.181
5	92.282	70.407
6	92.514	70.099
7	146.28	80.522
8	146.64	79.700
9	222.67	115.63
10	227.11	121.51

Deformation and mode shapes for $6^{\text {th }}$ torsional mode
Deformation and mode shapes for $5^{\text {th }}$ torsional mode

CAL POLY POMONA

Forced Vibration Analysis

- The results from the embedded actuator forced vibration study indicate that for the first asymmetric loading case in which five actuators each having 5 N force (generators) were located on the leading edge of the left wing and five generators were placed on the trailing edge of the right wing of the airfoil, the first, second and third modal frequencies are $11.81 \mathrm{~Hz}, 11.822 \mathrm{~Hz}$, and 58.045 Hz corresponding to maximum deflections of $62.853 \mathrm{~mm}, 62.896 \mathrm{~mm}$, and 78.066 mm , respectively
- For the second asymmetric loading case whereby five actuators were staggered spatially on the left wing and five generators were staggered spatially on right wing of the airfoil, the first, second and third modal frequencies are $11.756 \mathrm{~Hz}, 11.762$ Hz , and 57.834 Hz corresponding to maximum deflections of $37.328 \mathrm{~mm}, 37.333$ mm , and 46.537 mm , respectively
- For the third asymmetric loading case where five actuators were staggered arranged spatially concentrated near the outboard region on the left wing and five generators were arranged spatially concentrated in the vicinity of the outboard area of the right wing of the airfoil, the first three modal frequencies are 11.538 Hz , 11.539 Hz , and 57.395 Hz corresponding to maximum deflections of 61.575 mm , 61.567 mm and 74.413 mm , respectively
- Hence, it is clear that the architectural layout and placement of the embedded actuators has a profound effect on the vibrational characteristics of the UAV airfoil

Fluid Structure Interaction (FSI) Analysis UNSYS

- ANSYS 2-way FSI Set-up

10 Project -…
†… Geometry
(1) Coordinate Systems
(1) Connections

- Mesh
(1)... Named Selections
$\square \sqrt{-}$ Static Structural (D5) Analysis Settings

Fixed Support
Fluid Solid Interface
\square Solution (D6)
! \quad Solution Information
(10) Total Deformation
(191) Equivalent Elastic Strain
(1) Equivalent Stress

- Maximum Principal Stress
- Maximum Principal Elastic Strain
(Force Reaction
\checkmark Moment Reaction

FSI Analysis

Pressure Field

/NSYS
 FLUENT ${ }^{\circ}$

Velocity Field

$1.36 \mathrm{e}+02$
$1.16 \mathrm{e}+02$
$9.67 \mathrm{e}+01$
$7.71 \mathrm{e}+01$
$5.75 \mathrm{e}+01$
$3.79 \mathrm{e}+01$
$1.83 \mathrm{e}+01$
$-1.34 \mathrm{e}+00$
$-2.09 \mathrm{e}+01$
$-4.05 \mathrm{e}+01$
$-6.01 \mathrm{e}+01$
$-7.97 \mathrm{e}+01$
$-9.94 \mathrm{e}+01$
$-1.19 \mathrm{e}+02$
$-1.39 \mathrm{e}+02$
$-1.58 \mathrm{e}+02$
$-1.78 \mathrm{e}+02$
$-1.97 \mathrm{e}+02$
$-2.17 \mathrm{e}+02$
$-2.37 \mathrm{e}+02$
$-2.56 \mathrm{e}+02$

$2.60 \mathrm{e}+01$
$2.47 \mathrm{e}+01$
$2.34 \mathrm{e}+01$
$2.21 \mathrm{e}+01$
$2.08 \mathrm{e}+01$
$1.95 \mathrm{e}+01$
$1.82 \mathrm{e}+01$
$1.70 \mathrm{e}+01$
$1.57 \mathrm{e}+01$
$1.44 \mathrm{e}+01$
$1.31 \mathrm{e}+01$
$1.18 \mathrm{e}+01$
$1.05 \mathrm{e}+01$
$9.19 \mathrm{e}+00$
$7.89 \mathrm{e}+00$
$6.60 \mathrm{e}+00$
$5.30 \mathrm{e}+00$
$4.01 \mathrm{e}+00$
$2.72 \mathrm{e}+00$
$1.42 \mathrm{e}+00$

FSI Analysis

FSI Analysis

FSI Analysis

Table 4 Aerodynamic force results from FSI analysis

Parameter	Vale
Lift coeff.	0.077
Drag coeff.	0.0052
Lift /Drag coeff.	14.9
Drag force	11.74 N
Lift force	47.83 N
Center of press.	$(-6.8,-10.09,1.669)$
Press. moment	$-50.96 \mathrm{in}+\mathrm{x}$-dir.
Max. press. coeff.	0.98

Flutter Analysis

- Geometry/Mesh

Flutter Geometry

Rudder Mesh 15,K Tets Min. size 9 mm

- The pressure profile is transferred from the CFD analysis of the elevator with angle of attack maintained at $\alpha=5^{\circ}$

Flutter Analysis

- Flutter Theorv

Flutter Analysis

- Flutter Theory

Bending:
$-L-K_{h} h=m \ddot{h}+S_{\alpha} \ddot{\alpha}$
Torsion:
$L X_{A C}-K_{\alpha} \alpha=I_{\alpha} \ddot{\alpha}+S_{\alpha} \ddot{h}$
where
$I_{\alpha}=\int r^{2} d m \equiv$ wing polar inertia
$S_{\alpha}=\int r d m \approx X_{c g} m \equiv$ coupling inertia
Simple Harmonic Vibration :
$h=h_{o} e^{i \omega t}, \alpha=\alpha_{o} e^{i \omega t}$
Stiffness:
$K_{h}=\omega_{h}^{2} m, K_{\alpha}=\omega_{\alpha}^{2} I_{\alpha}$

Linear Aerodynamic Forcing Functions:
$L=\frac{d C_{L}}{d \alpha} \alpha \frac{1}{2} \rho V^{2} S=\frac{d C_{L}}{d \alpha} \alpha q S=\frac{d C_{L}}{d \alpha} \alpha_{o} q S e^{i \omega t}$ assumes torsion effects dominate, and neglects any second order acoustic or compressibility effects System of Equations:
$-\frac{d C_{L}}{d \alpha} \alpha_{o} q S-K_{h} h_{o}=-m \omega^{2} h_{o}-S_{\alpha} \omega^{2} \alpha_{o}$
$\frac{d C_{L}}{d \alpha} \alpha_{o} q S X_{a c}-K_{\alpha} \alpha_{o}=-I_{\alpha} \omega^{2} \alpha_{o}-S_{\alpha} \omega^{2} h_{o}$
Flutter Matrix Form :

$$
\left[\begin{array}{cc}
m \omega^{2}-K_{h} & S_{\alpha} \omega^{2}-\frac{d C_{L}}{d \alpha} q S \\
S_{\alpha} \omega^{2} & I_{\alpha} \omega^{2}-K_{\alpha}+\frac{d C_{L}}{d \alpha} q S X_{a c}
\end{array}\right]\left\{\begin{array}{l}
h_{o} \\
\alpha_{0}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Flutter Analysis

- Flutter Theory (continued)

Flutter Determinant :

$$
\begin{aligned}
& \left|\begin{array}{cc}
m \omega^{2}-K_{h} & S_{\alpha} \omega^{2}-\frac{d C_{L}}{d \alpha} q S \\
S_{\alpha} \omega^{2} & I_{\alpha} \omega^{2}-K_{\alpha}+\frac{d C_{L}}{d \alpha} q S X_{a c}
\end{array}\right|=0 \\
& \left(m \omega^{2}-K_{h}\right)\left(I_{\alpha} \omega^{2}-K_{\alpha}+\frac{d C_{L}}{d \alpha} q S X_{a c}\right)-\left(S_{\alpha} \omega^{2}-\frac{d C_{L}}{d \alpha} q S\right)\left(S_{\alpha} \omega^{2}\right)=0
\end{aligned}
$$

gives solutions for ω which define the motion, these solutions
mainly depend on the speed of the vehicle and hence are controlled by the value of the dynamic pressure q

Flutter Analysis

- Analytic Flutter Analysis Wing Bending-Torsional Predictions software of The University of Sydney http://aerodynamics.aeromech.usyd.edu.au/
- Eccentricity, $E=0.001 \mathrm{~m}$
- Mass of the Elevator, $m=0.149 \mathrm{~kg}$
- Density of Air, $\rho=1.225 \mathrm{~kg} / \mathrm{m}^{3}$
- Polar Moment of Inertia, $J=3.6 \mathrm{E}-5 \mathrm{~kg} / \mathrm{m}^{2}$
- Axis Locations, $A=-0.2$
- Semi chord of the Elevator, $B=0.06 \mathrm{~m}$
- Aerodynamic center, $B / 2=0.03$
- Elastic axis from the leading edge, $[(1+A) B]=0.048 \mathrm{~m}$
- Center of gravity (C.G.) from the leading edge, $[(1+E) B]=0.066$
- Distance between aerodynamic center and elastic axis, $X_{a c}=0.012 \mathrm{~m}$
- Distance between elastic axis and C.G., $X_{c g}=0.012 \mathrm{~m}$
- Reduced frequency k=o.2 (Fung (1969))

Flutter Analysis

- Analytical Flutter Results for Elevator
- Flutter Determinant, $\quad x=\frac{\omega_{\alpha}}{\omega}=1.32$ (Bislinghoff et al. (1962))
- Critical flutter speed, $U_{c r}=\frac{b \omega_{\alpha}}{k \sqrt{X}}=49.47 \mathrm{~m} / \mathrm{s}$ (Fung (1969))
- Divergence speed, $V=32.7 \mathrm{~m} / \mathrm{sec}$
- Eigenvalues for $1^{\text {st }}$ and $2^{\text {nd }}$ modes are plotted on next chart

Flutter Analysis

Frequency for vs. flutter speed $1^{\text {st }}$ Mode

Frequency for vs. flutter speed $2^{\text {nd }}$ Mode

Flutter Analysis

- ANSYS Results

Flutter Analysis

- ANSYS Results

CAL POLY POMONA

Flutter Analysis Results Summary

- Analytical flutter analysis is performed to verify the FEA results. The analytic flutter analysis gives the divergence speed to be $32.7 \mathrm{~m} / \mathrm{sec}$
- The numerical flutter analysis of the rudder shows the bending and torsional modes for the rudder were 60 Hz and 110 Hz , respectively
- The numerical flutter analysis of the rudder shows the maximum critical speed to be $75 \mathrm{~m} / \mathrm{sec}$ and the divergence speed to be $65 \mathrm{~m} / \mathrm{sec}$

Conclusions

- Free vibrations performed on UAV airfiol to obtain natural frequencies
- Forced vibrations on UAV airfoil using differing configurations of embedded actuators in order to help define a control algorithm
- FSI analysis performed of UAV airfoil in order to bound the interaction of the UAV with its environmental surroundings
- Flutter Analysis perfromed on UAV elevator and rudder to understand possible failure modes
- Analytic and numeric flutter analysis is in quantitative agreement

Future Work

- Fly UAV with instrumentation (accelerometers and strain gages) and correlate FEA model for Vibration and Flutter
- Finalize design of embedded actuators (MEMS, Vortex shedders, etc.)

References

Textbooks

- Fung, Y. 1969. An Introduction to the Theory of Aeroelasticity. New York: Dover Publications.
- Bisplinghoff, Raymond, and Holt Ashley. 1962. Principles of Aeroelasticity. New York: Wiley

Peer Reviewed Journal Articles

- K. Anderson, S. Singh, D. Edberg, and S. Dobbs, "Vibration analysis of an embedded actuator based UAV", Journal of Vibration Analysis, Measurement, and Control, accepted for publication July 2015.
- "Flutter study of a high-altitude UAV using ANSYS" by Sukwinder Singh, Kevin R. Anderson, Steven K. Dobbs, Donald Edberg submitted to International Journal of Structural Mechanics and Finite Elements, in review September, 2015.

Conference Proceedings

- "Numerical and Theoretical Aeroelastic Flutter Analysis of a HALE UAV" by Kevin R. Anderson*, Sukwinder Singh*, Steve Dobbs**, and Don Edberg**, *Mechanical Engineering, **Aerospace Engineering, Cal Poly Pomona, accepted for presentation at 16th Intl. Conf. on Mechanical and Aerospace Engr. (ICMAE) Feb. 13, 2016, Convenient Grand Hotel, Bangkok, Thailand
- "Fluid-Structure Interaction (FSI) \& Flutter Analysis of a Solar Powered UAV" by Dr. Prof. Kevin R. Anderson, Mr. Nouh Anies, Ms. Shilpa Ravichandra, Mr. Sukhwinder Singh Sandhu, Mechanical Engineering, Non-linear FEA/CFD Multiphysics Simulation Lab, Prof. Steve Dobbs, Dr. Prof. Donald Edberg, Aerospace Engineering, Cal Poly Pomona abstract accepted to the $3^{\text {rd }}$ Intl. Mech-Aero Conference, San Francisco, CA, USA, Oct. 2015, Track 3-5 Airship Design and Development - Design.
- Vibration Analysis of a Solar Powered UAV" by Dr. Prof. Kevin R. Anderson, Mr. Nouh Anies, Ms. Shilpa Ravichandra, Mr. Sukhwinder Singh Sandhu, Mechanical Engineering, Non-linear FEA/CFD Multiphysics Simulation Lab, Prof. Steve Dobbs, Dr. Prof. Donald Edberg, Aerospace Engineering, Cal Poly Pomona, The 17 th International Conference on Theoretical and Applied Mechanics (ICTAM), Los Angeles, CA, Sep. 28-29, 2015.

Webpages

- https://sites.google.com/site/aerodynamics4students/table-of-contents (last accessed 10/3/15)

