The role of amyloid beta peptide variability toward progress of Alzheimer disease

Kerensa Broersen Brain Disorders and Therapeutics London, August 26

LET : valetantid prior no nenerical providential meaning

Alzheimer's disease

Amyloid β peptide

Alzheimer's disease

The aggregation process of $A\beta$ is characterized by intermediates that may have toxic activity

Figure adapted from Kumar *et al EMBO J (2011)*

The aggregation process of $A\beta$ is characterized by intermediates that may have toxic activity

Figure adapted from Kumar *et al EMBO J (2011)*

Αβ38

 $A\beta 42:A\beta 40 = 3:7$

$A\beta$ heterogeneity affects aggregation

$A\beta$ heterogeneity affects toxicity

3:7 Aβ42:Aβ40 ratio causes memory and learning impairment in mice

Passive avoidance response

Kuperstein et al., EMBO J.¹²2010

Aβ heterogeneity affects toxicity

Microelectrode array: synaptic activity recordings in neuronal network grown on chip

60 recording electrodes

Kuperstein et al. EMBO J. 2010

Pathological mixtures of Aβ40 and Aβ42 induce acute synaptotoxicity

Αβ38

$A\beta$ peptide length affects aggregation rate

Tendency to form amyloid fibrils is independent of $A\beta$ peptide length

... but morphological differences

All tested Aβ peptide lengths form oligomers but with different structural properties.

> Recognition of oligometric A β by A11 antibody.

Height ABS

Dentri

5cm

06m

Vandersteen et al (2012) J Biol Chem 287: 36732-36743

 $A\beta$ peptide length affects cytotoxicity: unexpected toxicity of $A\beta 38$

Cell titer blue cell viability assay of neuroblastoma SHSY-5Y cells by incubation with oligomeric $A\beta$.

Chavez-Gutierrez et al (2012) EMBO J 31: 2261-2274

A β peptide length affects cytotoxicity: unexpected toxicity of A $\beta 38$

Vandersteen et al (2012) J Biol Chem 287: 36732-36743

$A\beta$ mutations

D23N (Iowa mutant) and E22K (Italian mutant) A β 42 form antiparallel β -sheet fibrils

Qiang et al (2012) PNAS \rightarrow A β 40.

Vandersteen et al (2012) FEBS Letters

Alzheimer's disease – Cerebral amyloid angiopathy (CAA) CAA is a common clinical symptom of early-onset familial AD

BRAIN Amyloid-beta (Aβ) plaques

BLOOD Aβ deposits in cerebral blood vessel walls

$\hat{\nabla}$

Vessel walls prone to rupture Narrows lumina

$\hat{\Gamma}$

Intracerebral and subarachnoid bleeding Infarcts Periventricular oedema

Bugiani et al 2010.

ThT fluorescence intensity of fibrils varies with mutation

Hubin et al. Cell Mol Life Sci 2015

Wild type and E22K A β_{1-42} fibrils interact differently with conformation-dependent fluorescent probes (ThT and bis-ANS)

Bis-ANS: binds to hydrophobic patches LeVine H. (2002) Wild type and E22K A β_{1-42} differ in solvent accessibility in the Aβ region comprising residues [20-34]

H/D exchange - Mass Spectrometry with proteolytic fragmentation

Changes in secondary structure during A β aggregation can be monitored by ATR-FTIR

Cerf et al. Biochem J (2009); Sarroukh et al. BBA Biomembrane (2013)

Changes in secondary structure during A β aggregation can be monitored by ATR-FTIR

Cerf et al. Biochem J (2009); Sarroukh et al. BBA Biomembrane (2013)

ATR-FTIR reveals major change in secondary structure during transformation of wild type A β oligomers into fibrils

A minor peak around 1695 cm⁻¹, representative of antiparallel β sheets, persists during E22K A β_{1-42} aggregation

Cerf et al. Biochem J (2009); Sarroukh et al. BBA Biomembrane (2013)

The β -sheet index (1695/1630 intensities ratio) is proportional to the percentage of antiparallel arrangement of β -strands in a β -sheet

Sarroukh R. et al (2010)

The β -sheet index (1695/1630 intensities ratio) is proportional to the percentage of antiparallel arrangement of β -strands in a β -sheet

Hubin et al. Cell Mol Life Sci 2015

But: Fibrils and not remaining oligomers are responsible for observed antiparallel β -sheet conformation

E22K A β_{1-42} fibrils can convert from antiparallel to parallel β -sheet structure in an acidic environment (switch from pH 7.4 to pH 2.0)

E22K A β_{1-42} fibrils can convert from antiparallel to parallel β -sheet structure in an acidic environment (switch from pH 7.4 to pH 2.0)

Hubin et al. Cell Mol Life Sci 2015

Protease resistant? Impact on BBB permeability?

Conclusions

'Physiologically' relevant mixtures of $A\beta$ peptides may behave differently from what you would expect based on their isolated characteristics.

What is the perfect in vitro read-out for AD-related toxicity?

Antiparallel β -sheet fibrils exist, are remarkably stable but can also be converted upon changing environmental conditions.

Acknowledgements

Universiteit Twente

Ellen Hubin Annelies Vandersteen Ine Segers Nolten Elske Cornelisse

Universite Libre de Bruxelles

Vincent Raussens Stephanie Deroo Rabia Sarroukh Erik Goortmaghtigh

Vrije Universiteit Brussel

Wim Jonckheere Kris Pauwels

Katholieke Universiteit Leuven

Frederic Rousseau Joost Schymkowitz Bart De Strooper Inna Kuperstein Iryna Benilova **NIMR, UK** Annalisa Pastore Geoff Kelly

University of Sussex Louise Serpell

Kyle Morris Thomas Williams

E22K A β : more random coil and turn at the expense of β -structure.

H/D exchange shows 20 % difference in accessibility of backbone amide hydrogens between wild type and E22K A β_{1-42} fibrils

H/D exchange shows 20 % difference in accessibility of backbone amide hydrogens between wild type and E22K A β_{1-42} fibrils

H/D exchange monitored by ESI-MS and pepsin proteolysis reveals a higher solvent accessibility for the Italian mutant in the central region

Peptide		Backbone amide protons exchanged	Protected NH/total
[1-19]	WT	14.0 ± 0.5	4/18
	E22K	14.3 ± 0.4	3.7/18
[20-42]	WT	7.3 ± 0.7	14.7/22
	E22K	9.6 ± 0.8	12.4/22
[35-42]	WT	3.1 ± 0.5	3.9/7
	E22K	3.4 ± 0.3	3.6/7
	per	esin esin	Pepsin
RHDSG	YEVHHQKLVF	FAEKDVGSN	KGAHGEMVOG

[20-42]

[35.42]

Conclusions & perspectives: is there a link between the underlying β -sheet orientation of A β fibrils and disease-associated pathology?

- E22K A β 42 (and D23N A β 40 and A β 42) arrange into anti-parallel β -sheet fibrils.
- E22K fibrils are structurally different from WT A β 42.
- Antiparallel β -sheet fibrils from E22K A β 42 can rapidly (< 30 min) converse into parallel by changing the pH.

Work in progress – relation with CAA:

Do antiparallel β -sheet fibrils disintegrate the blood-brain barrier \rightarrow blood-brain-barrieron-a-chip technology.

In our search for additional confirmation ...

 $\simeq 10$ Å.

X-ray fiber diffraction \rightarrow two reflections but no differences in structure.

X-ray fibre diffraction in collaboration with L. Serpell (University of Sussex, UK), Morris KL & Serpell L (2012).

Meridian ~ 4.7 Å Fibrils from E22K and WT A β 42 are similarly 'toxic' to astrocytes (and neuroblastoma cells).

Mature E22K $A\beta_{1-42}$ fibrils can convert from antiparallel to parallel structure

E22K A β_{1-42} shows sustained (SDS-stable) oligomer formation.

SDS-PAGE/WB (antibody 6E10)

Quantitative analysis consists of deconvolution of the amide I band into its primary components, followed by a curve fitting

Goormaghtigh E. et al (1999)

E22K A β_{1-42} shows sustained (SDS-stable) oligomer formation.

Native PAGE/WB (antibody 6E10)

Attenuated Total Reflectance (ATR) – FTIR spectroscopy has the capability to identify functional groups (C=O, C-H, N-H, ...)

Thioflavin T (ThT) is less easily locked in its excited comformation in antiparallel fibrils, leading to a lower final ThT fluorescence intensity

Amide I and Amide II bands contain secondary structure information

Aggregation of A β peptide is predicted to vary with peptide length

Vandersteen et al (2012) J Biol Chem 287: 36732-36743

Antiparallel β -sheet architecture of Italian mutant E22K A $\beta_{1\text{-}42}$ fibrils $$\Lambda\beta_{1\text{-}42}$$

Figure adapted from Masuda et al. Bioorg & Med Chem (2005), FDX: Louise Serpell, Sussex University, UK