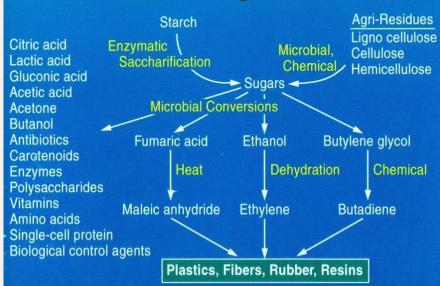


A novel oil produced by *Aureobasidium* has antibacterial activity with specificity for species of *Streptococcus*.

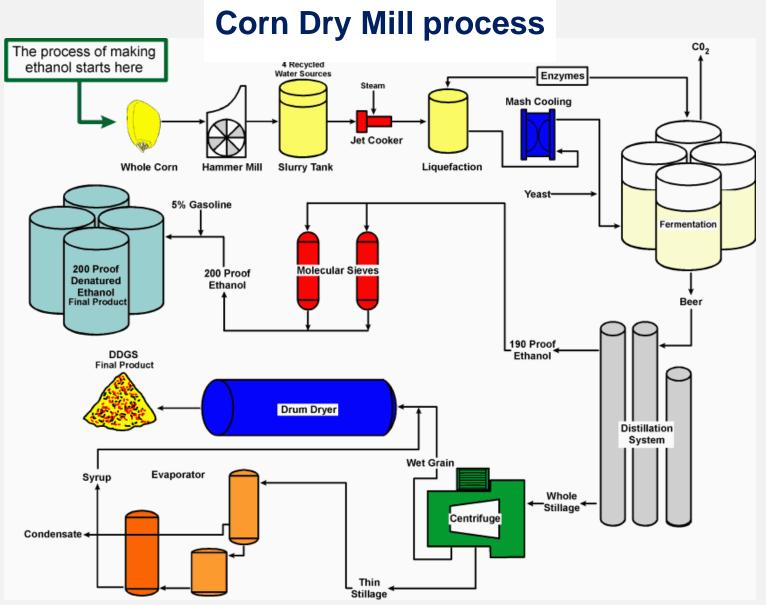
Kenneth M. Bischoff, Neil P. J. Price, Timothy D. Leathers, Pennapa Manitchotpisit

U.S. Department of Agriculture Agricultural Research Service National Center for Agricultural Utilization Research Renewable Product Technology Research Unit Peoria, IL



Renewable Product Technology Research

Useful Products from Agricultural Materials

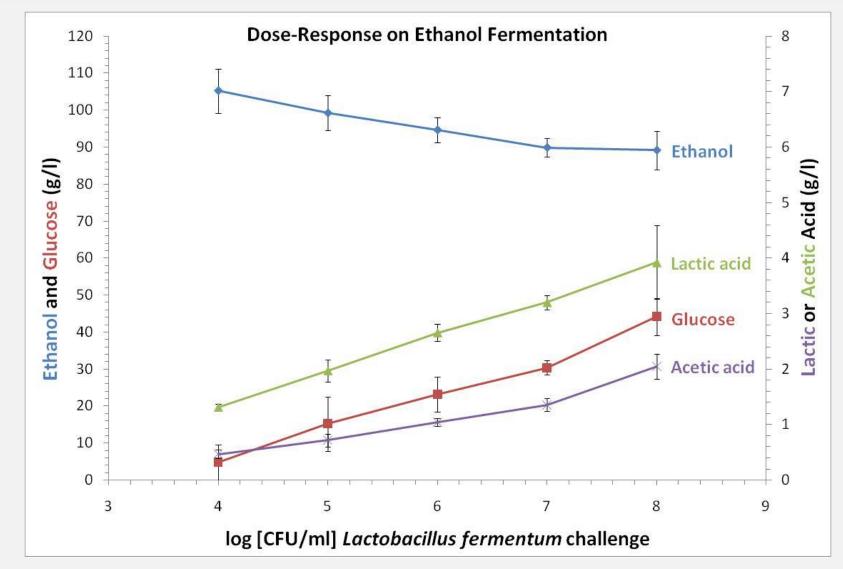


Mission: Develop new biobased products and improve the biochemical processes for the biorefining industry.

United States Department of Agriculture

ISDA

Source: http://www.distillersgrains.org/files/grains/CornDryMillProcess.html


Survey of bacterial contaminants in fuel ethanol plants

Genus	% of total ^a				
	<u>Wet mill</u>	Dry Grind #1	Dry-Grind #2		
Bifidobacterium	0 – 20	1 – 2	0		
Clostridium	0 – 9	0	0		
Lactobacillus	44 – 60	37 – 39	69 – 87		
Lactococcus	0 – 4	0-6	0		
Leuconostoc	0-6	1 – 8	0 – 8		
Pediococcus	0-6	19 – 24	0 – 4		
Weisella	0 - 2	18 – 24	0-6		

^aValues represent a range over multiple samplings.

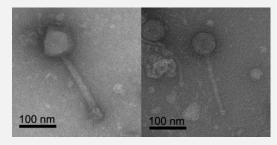
Skinner and Leathers, 2004

Bischoff et al., *Biotechnol. Bioeng.* <u>103</u>:117-122 (2009)

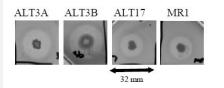
Antibiotics in the ethanol industry

Antibiotic	Mechanism	Bactericidal/static	Spectrum		
1a. Penicillin G 1b. Penicillin V*	Inhibits cell wall synthesis	Bactericidal	Gram(+) bacteria		
2. Bacitracin	Affects cell wall	Bactericidal	Gram(+) bacteria		
Tetracycline	Protein synthesis inhibitor	Bacteriostatic	Gram(+) & Gram(-) bacteria		
4. Streptomycin	Protein synthesis inhibitor	Bactericidal	Gram(+) & aerobic Gram(-) bacteria		
 Erythromycin Polymixin 	Protein synthesis inhibitor Affects cell membrane	Bacteriostatic, cidal at high doses Bactericidal	Gram(+) & Gram(-) bacteria Gram(-) bacteria		
Virginiamycin	Protein synthesis inhibitor	Bactericidal	Gram(+) bacteria		
8. Monensin	Affects cell membrane	Bactericidal	Gram(+) bacteria		
9. Chloramphenicol	Protein synthesis inhibitor	Bactericidal (or) static	Gram(+) & Gram(-) bacteria. Good against anaerobes. Heat stable?		

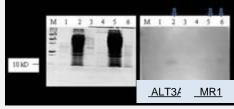
Table 2. List of some of the antibiotics used in the ethanol industry, their modes of action and activit	y spectrum.


* Has the same properties as penicillin G but is more stable at acidic pH.

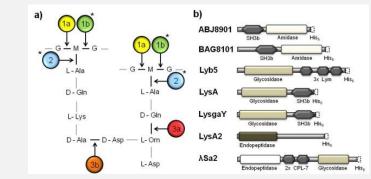
Source: Narendranath, (2003) In: The Alcohol Textbook, 4th Edition, pp 287-298.



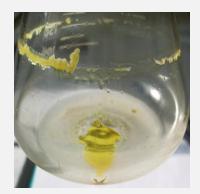
Non-antibiotic intervention methods


Bacteriophage

Antibacterial peptides



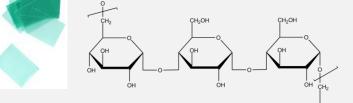
Inhibition of Lactobacillus



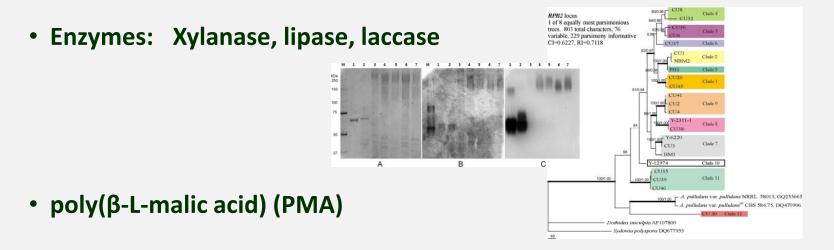
Zymogram

Lytic enzymes

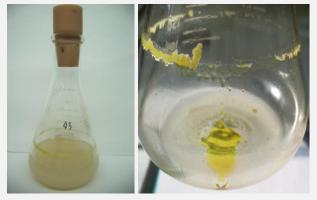
Natural products: Liamocins

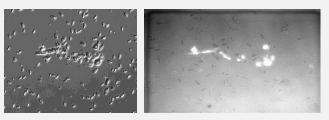

United States Department of Agriculture

ISDA


Aureobasidium pullulans products have biotechnological applications:

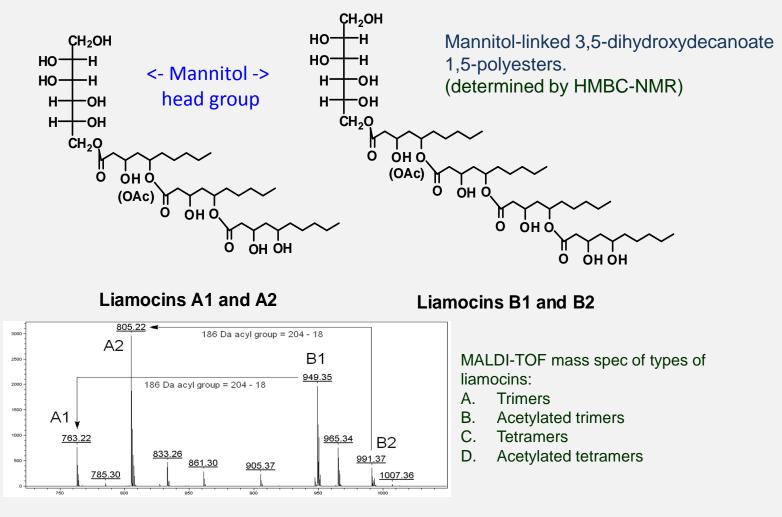
• Exopolysaccharide (pullulan)


 $\alpha\text{-}1,4\text{-}$; $\alpha\text{-}1,6\text{-}glucan$ i.e. $\alpha\text{-}1,6\text{-}maltotriose$ units

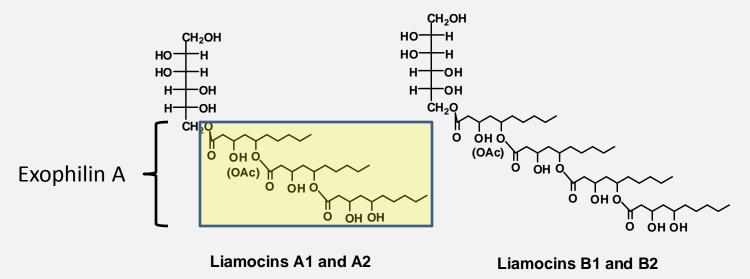

Heavy oils produced by Aureobasidium pullulans

Manitchotpisit et al., Biotechnol. Lett. 33:1151-1157 (2011)

- 21/50 strains produced heavy oil.
- Yields: 0.5 6.0 g oil / L culture media 0.01 - 0.12 g oil / g sucrose
- Extracellular polyol lipids from Aureobasidium was previously reported by Kurosawa et al., (1994).
- Surface active (biosurfactant).

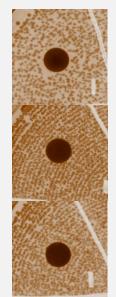

A. pullulans in liquid culture

<u>Microscopy:</u> *A. pullulans* on agar. A. Visible B. Fluorescence


Structural characterization of extracellular liamocins (mannitol oils) produced by *A. pullulans* strain NRRL 50380

Price et al., Carbohydrate Res 370:24-32 (2013)

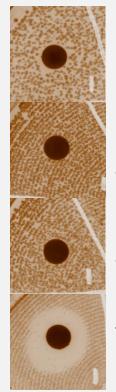
United States Department of Agriculture


Structural similarity to Exophilin A

- Exophilin A reported by Doshida et al., (1996).
- Product of Exophiala pisciphila (now Aureobasidium pullulans).
- Antibacterial activity against Gram positives.

Do liamocins inhibit bacterial contaminants of bioethanol fermentation?

Qualitative antibacterial assays

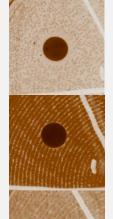

Lactobacillus fermentum BR0315-1

Lactobacillus brevis 5-37

Lactobacillus plantarum 5-38

Agar diffusion assay. Bacteria (20 μ l) at a density of 0.5 McFarland units were evenly spread on agar media, and paper discs (6 mm diameter) were placed on the surface. Oil from *A. pullulans* NRRL 50380 was dissolved to a concentration of 50 mg/ml in solvent (1:1 dimethylsulfoxide:2-butanone), and 10 μ l applied to each disc. Plates were incubated at 37°C overnight.

Qualitative antibacterial assays



Lactobacillus fermentum BR0315-1

Lactobacillus brevis 5-37

Lactobacillus plantarum 5-38

Streptococcus agalactiae KU-MU-3B

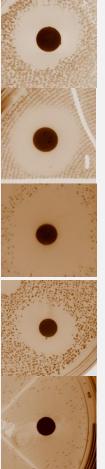
Enterococcus faecalis ATCC 29212

Staphylococcus aureus ATCC 29213

Psuedomonas aeruginosa ATCC 27853

Escherichia coli ATCC 25922

Agar diffusion assay. Bacteria (20 μ l) at a density of 0.5 McFarland units were evenly spread on agar media, and paper discs (6 mm diameter) were placed on the surface. Oil from *A. pullulans* NRRL 50380 was dissolved to a concentration of 50 mg/ml in solvent (1:1 dimethylsulfoxide:2-butanone), and 10 μ l applied to each disc. Plates were incubated at 37°C overnight.



Broth dilution susceptibility testing

Species	Minimum Inhibitory Concentration (μg liamocins / ml)				
Streptococcus agalactiae	40				
Enterococcus faecalis	312				
Bacillus subtilis	640				
Staphylococcus aureus	> 1250				
Lactobacillus fermentum	> 1250				
Escherichia coli	> 1250				
Pseudomonas aeruginosa	> 1250				

MICs of oil from *A. pullulans* NRRL 50380 were determined by broth dilution method, with serial two-fold dilutions of oil ranging from 1250 μ g/ml to 20 μ g/ml.

Qualitative antibacterial assays

- S. agalactiae NRRL B-1815
- S. uberis
- S. suis ATCC 43765
- S. pyogenes ATCC 12344
- S. pneumoniae ATCC 55143

S. mutans ATTC 25175

- S. mitis NRRL B-14574
- S. infantarius NRRL B-41208
- S. salivarius NRRL B-3714

S. sobrinus NRRL B-4468

Broth dilution susceptibility testing

Strain	Minimum Inhibitory Concentration (µg liamocins / ml)			
Streptococcus species				
S. agalactiae KU-MU-3B	40			
S. agalactiae NRRL B-1815	20			
S. uberis	80			
S. suis ATCC 43765	≤ 10			
S. pneumoniae ATCC 55143	3 ≤ 10			
S. pyogenes ATCC 12344	16			
S. mutans ATCC 25175	80			
S. mitis NRRL B-14574	20			
S. infantarius NRRL B-41208	8 80			
S. salivarius NRRL B 3714	≤ 10			
S. sobrinus NRRL B-4468	> 1250			

MICs of oil from *A. pullulans* NRRL 50380 were determined by broth dilution method, with serial two-fold dilutions of oil ranging from 1250 µg/ml to 10 µg/ml.

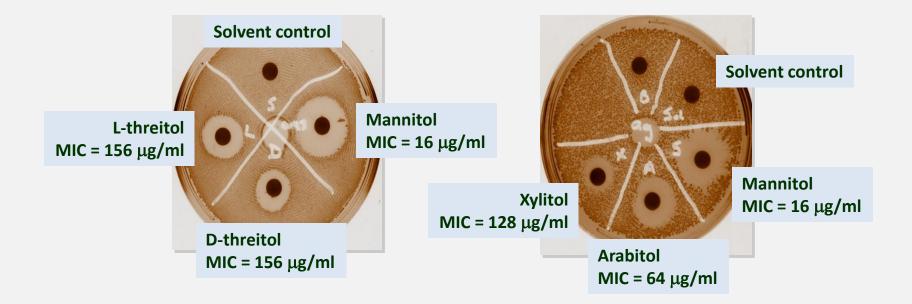
Feedstocks for production of liamocins

Carbon Source	Minimum Inhibitory Concentration (μg/ml)
Arabinose	≤ 20
Glucose	39
Sucrose	39
Xylose	39
Wheat straw	156
AHP-treated corn fiber	625
Oat spelt xylan	312

A. pullulans was grown in media containing the indicated carbon source, and oil extracted from the culture was tested for antibacterial activity. MICs for *Streptococcus agalactiae* were determined by broth dilution susceptibility testing.

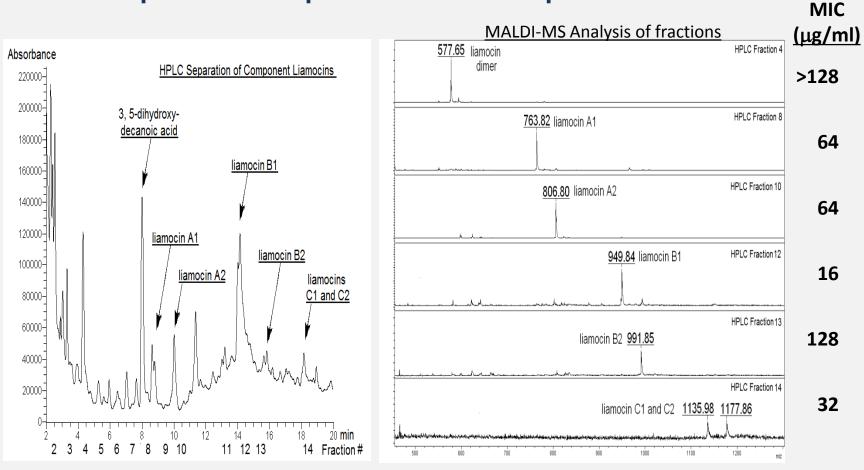
Polyols, not sugars, determine the structure of the liamocin headgroup.

Table 2. Liamocins from A. pullulans NRRL 50380 grown on different sugars or polyols as the sole carbon source.

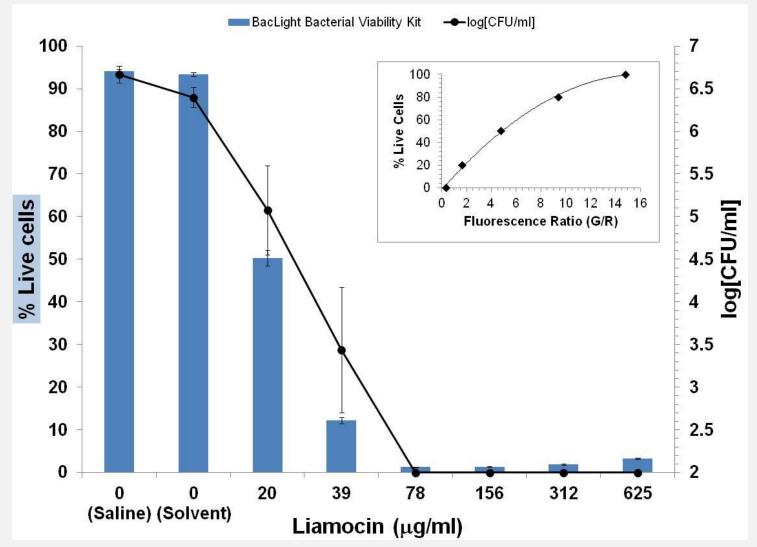

Carbon		% Polyo	l Headgro	oups from	Acid-Hyd	Irolyzed	Liamocins ²	2	
Source ¹	Gro	Thr	Ery	Rib	Ara	Xyl	Man	Glc	Gal
Sucrose	-	-	-	-	-	-	100	-	-
Lactose	-	-	-	-	-	-	100	-	-
D-fructose	-	-		-	-	-	100	-	-
D-glucose	-	-	-	-	-	-	100	-	-
D-mannose	-	-	-	-	-	-	100	-	-
D-galactose	-	-	-	-	-	-	100	-	-
D-arabinose	-	-	-	-	-	-	100	-	-
L-arabinose	-	-	-	-	-	-	100	-	-
D-xylose	-	-	-	-	-	-	100	-	
D-mannitol	-	-	-	-	-	-	100	-	-
D-glucitol	-	-	-	-	-	-	65	35	-
D-galactitol	-	-	-	-	-	-	73	8	19
D-arabitol	-	-	-	-	98	-	2	-	-
L-arabitol	-	-	-	-	62	-	38	-	-
D-xylitol	-	-	-	-	27	45	28	-	-
D-ribitol	-	-	-	18	63	-	19	-	-
D/L-threitol	-	78	-	-	-	-	22	-	-
erythritol	-	-	5	-	-	-	95	-	-
D-glycerol	75		-	-	8	-	17	-	-

¹Sole carbon source at 5% in PM medium (above the line the carbon sources are sugars, and below are polyols).

²Analyzed by GC/MS. The dry weight yields of the total liamocins were 1.2 - 1.5 g/L.

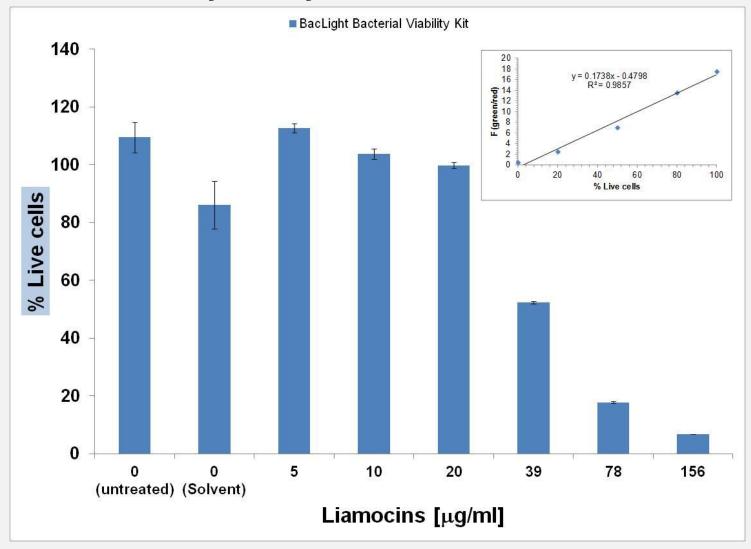


Susceptibility of S. agalactiae to structural analogs of liamocins.

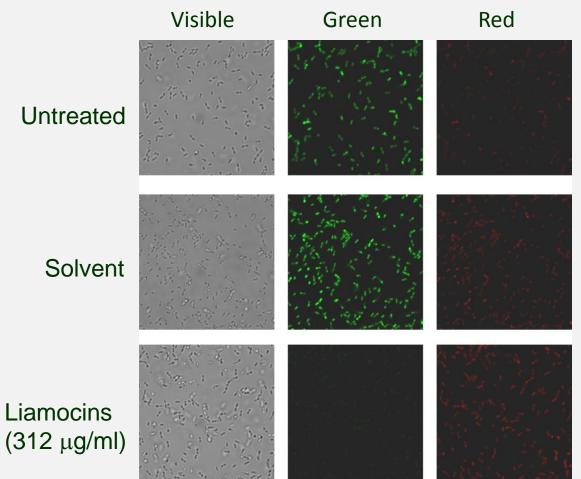


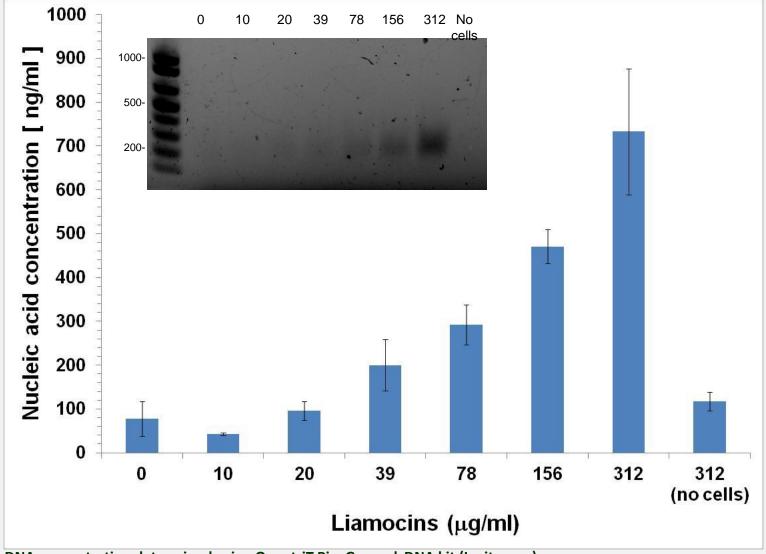
Reverse phase HPLC purification of component liamocins.

Oil from *A.pullulans* NRRL 50380 was fractionated on an RP18 HPLC column using a linear gradient of 50 – 100 % acetonitrile in water. The collected fractions were assayed by MALDI-MS, and tested for antibacterial activity by broth dilution.


Viability assays: S. agalactiae

Determined using LIVE/DEAD BacLight Bacterial Viability Kit (bars) and by enumeration of surviving cells (line).


Viability assays: S. suis ATCC 43765


Determined using LIVE/DEAD BacLight Bacterial Viability Kit.

USDA

Fluorescence microscopy S. suis ATCC 43765

Cell leakage assays: S. suis ATCC 43765

DNA concentration determined using Quant-iT PicoGreen dsDNA kit (Invitrogen).

Summary

- Nine species of *Streptococcus* were susceptible to growth inhibition by *A. pullulans* liamocins.
- Lactobacillus spp., S. aureus, E. faecalis, B. subtilis, E. coli, and P. aeruginosa were not susceptible.
- Growth on polyols can alter the head group.
- Mannitol liamocin B1 (the non-acetylated tetramer) appears to be the most active type.
- Liamocins treatment results in loss of membrane integrity.

Conclusions

- Liamocins have antibacterial activity with specificity for *Streptococcus*.
- Future directions:
 - Test against clinical/field isolates.
 - Determine mode of action.
 - Purify/synthesize liamocins sub-types.
 - Apply in veterinary/clinical models.
- Liamocins may be developed as a narrow spectrum antimicrobial agent that targets streptococcal pathogens but avoids disruption of the beneficial normal flora.

34

United States Department of Agriculture

Agricultural Research Service

Thank you.

Renewable Product Technology Research Unit

Timothy Leathers Neil Price Joseph Rich Chris Skory Siqing Liu Stephen Hughes Piyum Khatibi

Illinois State University Pennapa Manitchotpisit Eric Hoecker Melinda Nunnally

1005 1000 00 00 carses

Contraction of the