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Main Aim of This Presentation

Use of FGM concept for improving dynamic, stability
and aero-elastic performance of typical aerospace
structures. The properties of the material of
construction are optimized using either continuous or
piecewise variations of the volume fractions in
predetermined directions .

The major aim is to tailor the mass and stiffness
distributions so as to maximize a desired eigenvalue
without the penalty of increasing structural mass.

Case studies include frequency optimization of box spar
beams, divergence of aircraft wings, whirling &
torsional buckling of spinning thin beams.

The mathematical formulation is based on
dimensionless quantities, which leads to a naturally
scaled optimization models and valid analysis for
different configurations and sizes.



What is FGM ?

m FGMs may be defined as advanced
composite materials that fabricated to have
graded variation of the relative volume
fractions of the constituent materials.

=2 Example: A composite material made from a
mixture of ceramic and metal. Ceramic
provides high temperature resistance
because of its low thermal conductivity
while metal secures the necessary strength
and stiffness.
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Thickness distribution of the fiber volume fraction in FGM beam, v40)=40%, v(1/2)=60%

Bedjilili Y, Tounsi A, Berrabah H.M, Mechab I: Natural frequencies of composite beams
with a variable fiber volume fraction including rotary inertia and shear deformation.
Applied Mathematics and Mechanics. 2009; 30( 6): 717-726.
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Spanwise grading of fibers in a fibrous composite plate

Shin-Yao K: Flutter of rectangular composite plates with variable fiber spacing. Composite Structures. 2011; 93: 2533-2540




Advantages of Fabricating Aerospace
Structures from Composites

m Higher stiffness-to-weight ratio.
m Superior fatigue characteristics.
m Corrosion resistant.

= Material anisotropy provides direct
bending-axial-torsion elastic coupling.

m Use of aeroelastic tailoring to improve
structural design.



Eigenvalue Maximization

e The eigenvalues of free vibration, critical buckling load, critical
flow velocity, have been used widely as a performance measure of
aerospace structures.

e The maximization problem of the minimal eigenvalue (E) of a
structure under mass and side constraints may be cast in the
following:

Maximize: E(X)

Subject to mass constraint:  M(X) = M,
and side constraints:  X; < X < X,

e E(X) : Fundamental natural frequency,; Critical buckling load;
Divergence and Flutter speeds; .......

e Optimization is performed with respect to a known baseline design
that IS conservative regarding other structural and aerodynamic
requirements.




Design Variables \/\ %
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Design variables (X)

-Geometry, Cross sectional dimensions

- Properties of fibers and resins
- No. of layers.
- Thickness of each layer.
- Fiber orientation in each layer.
- Fiber volume fraction in each layer.
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Determination of Material Properties

A variety of approaches have been developed to predict the
mechanical properties of fibrous composite materials. The common
approaches fall into the following general categories:

1. Mechanics of materials
2. Numerical methods

3. Variational approach
4. Semi-empirical

5. EXperimental

Semi-empirical relationships have been developed to avoid the
difficulties with the above theoretical approaches and to
facilitate computations. The so-called Halpin-Tsai relationships
have consistent forms for all properties of fibrous composite
materials.



Halpin-Tsal Semi-empirical relations

Elastic property Mathematical formula

EU:Em Vm o Elfr’}
Eg-_v:Em (L=t fl]Vf)/(] -l]V{) n = (E_"j" m)/(E_’f':" ':Em)
G]'_*-:Gm (1 —.:’UVf)/(] -Iﬂ/_}) 5 (GJ}f—Gm)/(GJJf_ ‘:Gm)

Vi2=VmVm + ViyVs

G;> denotes the shear modulus. v;, the major Poisson’s ratio and E; and E;; and are the
Young’s moduli in the principal material directions. 7 denotes volume fraction. Subscripts
“m” and “ 1 denote properties of matrix and fiber materials, respectively. The sum V,,+V= 1,
assuming no voids are present.

The factor &1is a measure of reinforcement of the composite material that depends on the fiber

geometry. packing geometry and loading conditions . It 1s used to make Halpm-Tsai

relations conform to the experimental data.




Case Study (1)

Frequency Optimization of Thin-Walled Box Beam

e Natural frequencies are the most representative of the overall
Stiffness/mass level of a structure,
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Karam Y. Maalawi, “Dynamic Optimization of Functionally Graded Thin-Walled Box
Beams,” International Journal of Structural Stability and Dynamics, Vol. 17, No.9, 2017
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One-panel, Thin-walled cantilevered spar beam made of one ‘carbon/epoxy’ lamina(L=D = 1)
Level curves of ( ii)i) frequency function augmented with the equality mass constraint M = 1
(\ dTl),,m, = 2.02589 (Gain w.r.t baseline design=8.04%), (Vs, H, O)opr. =(0.75, 0.92, 0)
Independent on units and dimensions. Target frequency can be easily chosen without mass penalty




Continuous Grading
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Optimal solutions using spanwise grading ( M-=1)

‘S-1' model: v-(®) = vy, (1 - B£F),

‘S-2" model: v(X) = vp [Br(1 — X™)P + Af], n=1, 2, 3

Gradingmodel | (A5 Plopr. . (N®1)mar Gain %
(S-1) (0.34, 1.01), 2.01875, 7.66%
n=1 |(0.34,1.02), 2.01938, 7.70%

(S-2) | n=2 |[(0.34,2.425), 2.04813, 9.23%
n=3 |(0.34,5.175), 2.06125, 9.93%
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Two-segment, one unidirectional lamina spar beam.

(No longer restricted with power law)
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Case Study (1)

Optimization of Aircraft Wings against Divergence
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Forward-swept wings can have some aerodynamic and stability advantageous over the back-swept
wings. In addition, the rearward location of the main spar would lead to a more efficient interior
arrangement with more usable space inside the passenger cabin. However, the large structural weights
required to preclude aeroelastic divergence of forward-swept wings are unfavorable when compared to
similar swept back designs. Thus, proper aeroelastic tailoring is necessary to lessen the severity of the
aeroelastic divergence problem of such wing configuration.



1- Basic Model: Unswept Slender Wing
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(a) Multi-panel, piecewise wing model (b) Airfoil section and applied airloads

Trapezoidal wing planform and cross section geometry
Chord distribution: C(x) =C,(1-fX), pB.=(1-4))
Same lay-up [0° / £90° / £45°]s ‘Quasi-isotropic material)

The various parameters and variables are normalized with respect to known baseline
design, which is constructed from the same material with V=V =50%. Optimized wing
designs, shall have the same wing area, airfoil, span, and total mass.



The governing differential equation of wing divergence is:
o X
(G] a) + Epszzeaa =

Equivalent modulus of rigidity: G, = “L Q”‘)b6hk (hy = hy, /H)

Torsional constant of the cross section: | = 442 s )

For the it" panel extending from x; to x;.;, and having uniform wall thickness H; and
volume fraction Vj, the governing D.E. has the form:

(1-p2)a"—3Ba +Ala=0, (f =1-A4)

o_* 2_ "V & _Ga m _p
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Power series solution: a(%) = Y72, 4,27+

a(®) = ¢, f(%) + C,9(%)
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Unswept Wing

{aN'p+1} " [511 E12] { 0 }
0 Ei; Ez|(T4

The non-trivial solution: E,,=0 (The smallest root gives Vd,;v)

Optimization Model

Minimize —
Subjectto M;—1.0=0
(0.3,0.5,0.0) < (Vy, H,b)i=1 2 np < (0.7,1.25,1.0)

¥ b;=1.0




Two-panel wlng with Combined Material and Thickness Grading
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Optimum solution: (V(H, b),_, , =(0.7, 1.0662, 0.725), (0.3, 0.5, 0.275)
V ;,,=2.76725 (i.e. 40.13% gain over 1.9747)




2- Bending Div

Rectanqular Wing
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Swept Forward Wing

For the it panel extending from x; to x4, and having uniform wall thickness H;
and volume fraction Vj, the governing D.E. has the form:

Wl"-f- AiW,: 0, X oS e Xi+1

.., Sin2A
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Equivalent modulus of elasticity: E, ZN" Q% il — _;v 1 2@ 5 k)
k=1 22

(hy = hy/H)

2" moment of area: I = ¢ H(s)Z?*ds .
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The non-trivial solution: E;; Ez - Ezz E43 = 0 (The smallest root gives de)
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Lewvel curves of ﬁdi,,\,"sinZIAi augmented with the mass constraint M, = 1 (H,-H,)-Design space
Optimal solution: (Vy H, b);_1 =(0.75, 1.18125, 0.6375), (0.50, 0.50, 0.3625) V i, maxy/ SinZ| Al = 3.2011
Optimization Gain=(3.2011-2.516)/2.516=27.23 %
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Level curves of l’;di,,\,-'si'nZIAl augmented with the mass constraint f:ls =1 (V,—,-—S;)—Design space
Optimal solution: (Vy H, B);-12:=(0.75, 125, 0.475), (0.75,0.8625, 0.175), .75, 05, 0.35), V4;, ono.,/sin2] Al = 3.288
Optimization Gain= (3.288-2.516)/2.516 =30.7 %




Three- Panel wing with only material grading (Wall thickness is kept constag

(H;=1.0,i=1,2,3)

Dimensionless length of middle panel
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Level curves of ?d,»,,\,-'sinZlAl augmented with the mass constraint ﬁs =1 (Vp-sz )-Design space

Optimal solution: (V;, b);1 2 3=(0.75, 0.40625), (0.475,0.215), (0.25, 0.37875), V giy max/ SinZ| Al = 2.845
Optimization Gain = (2.845-2.516)/2.516 = 13.08 %




Torsional buckling optimization problem

The governing differential equations of torsional buckling are:

N,x+Nyy—2Tu,,=0
Neyxt Ny, + (M, /R)+ (M, ,/R)—2T(v,+w,/R)=0
Myt (Mo + M).x)‘n_ +M,,,—N,/R+2T(v,/R—w,,) =0

Nx and Ny are the normal forces, Nxy and Nyx are shear forces, Mx and My are bending moments, and Mx and My are torsional
moments applied to the mid-surface per unit wall thickness of the spinning beam. T is the applied torque, R is the mean radius
and (u, v, w) the displacements of a generic point on the middle-surface of the beam wall.
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Typical torsional buckling mode shape of a rotating shaft

There are other simple empirical equations based on experimental studies that can give a reasonable estimate of the buckling
torque. The most commonly used formula for the case of simply supported beam is:

T, = (2nR%H)(0.272)(E,)*?>(E,)*75(H/R)>

I>= critical torque at which torsional buckling occurs
H= total wall thickness of the spinning beam.

2

K. — %(Au - :‘:;) equivalent modulus of elasticity in the axial direction

E,= ;,-(Azz - ‘fn_) equivalent modulus of elasticity in the hoop direction

A»n = elements of the extensional stiffness matrix.




Find the design variables vector X = (Vf. Oh )k_l 5

subject to

Maximum shear stress:

Optimization Model

which minimizes the objective function:

N
Minimize F= T
Mass limitation M—-1<0
Torsional strength: (r’"‘”) 1.0<0
Tallow
Whirling Qon—2.,<0
Side constraints ?L <X < YU
o _ N — B —
H, <), h <Hy

tmax = (Tmax/anzH)

Maximum applied torque: T ax

Allowable shear stress:

Taow (to be calculated according to the embedded material properties and

volume fraction of the fiber).




Example (1): Rotating thin-walled beam made of carbon/epoxy composites with discrete thickness
grading constructed from eight symmetric, balanced plies (#& #&); with same thicknesses.
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—

T., - contours in (V;;-8) design space under mass constraint M = 1.

A local maximum of Tcr can be observed near the design point (Vs, 6) = (0.7, 90°). This illustrates that
the maximum critical buckling torque can be achieved when the fiber orientation angle is close to 90°.

Example (2): Cross ply layup [90°/0%],
Viapt,i=(70%)ic1.8 , Rope ;= [0.1994, 0.0967, 0.152, 0.019],
Tc,.’ma_x = 1.321 (i.e. optimization gain=32.1% above the baseline design).

Mass and whirling constraints became active at the achieved optimum design point.




Whirling

Kr=m({r+e)
o

r= w> = K/m

w2 — &

When the rotational speed coincides with the
natural frequency of bending vibration, the
beam tends to bow out with large amplitude.
Such a resonance situation should be avoided in
actual practice.

O = Line ofbearings
S = geometric cenire
G = cenire of mass




Whirling optimization problem

Two alternatives may be considered regarding the whirling optimization problem:

(a) Direct maximization of the critical rotational speed

Find the design variables vector X = (Vf. 6h )k~1 _ which minimizes the objective function:

Minimize =-0Q.
Subject to M-1<0
T.
] 10 =0
(Tallow)

(b) Placement of the critical speed

The other alternative of the objective function is defined by:
Minimize F=(Q,—2)2

Q) is a dimensionless target rotational speed (> 2,,,.., by a reasonable margin (e.g. 10-20%).




Example 1: Thickness grading pattern
v£(2) = v£(0) + [v£(0.5) — v,(0)](2|2])*,
—Qng:§305,pzo

Yo_pt = (Vf(()), Vs (g)p H) = (0.7,0.3,5.61,0.955) at which 2, increased by 14% above that of
the baseline design with active mass and torsional buckling constraints.

Example 2: A last optimization strategy to be addressed here is to combine the two criteria in a single
objective function subject to the mass, strength and side constraints.

Minimize F=—-(Q,+T_.)
Subject to M-1<0
(fme=)—1.0 <0
Tallow

It is assumed that whirling and torsional buckling instabilities are of equal relative importance. This
model resulted in a balanced improvement in both stabilities with active mass constraint. The attained
optimal solution was found to have a uniform distribution of the fiber volume fraction with its upper
limiting value of 70% and wall thickness = 0.935. The corresponding optimal values of the design
objectives were f?cr = 1.135 and Tcr = 1.161, representing optimization gains 13.5% and 16.1%,
respectively as measured from the baseline design.




nEfficient models for enhancing dynamics & aeroelastic stability
of composite wings using the concept of FGM have been
formulated. Optimization against torsional buckling and whirling
of rotating beams have been also addressed.

nExact solutions have been given analytically using differential
equation and power series methods.

aThe model formulation is independent on structural geometry
and type of material.

uCross-ply lay-up is efficient in both bending and torsion modes.

= The attained solutions using continuous FGM depend entirely
upon the form of the power-law expression, which represents an
additional constraint on the proposed optimization model. The
problem of determining the actual optimal distribution of the
v:lume fraction may be treated using advanced optimal control
theories.

= Coupled bending-torsion divergence of slender wings is
currently investigated. Extension of this work shall consider
optimization against flutter using grading in both wall thickness
and span directions
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