### Human Pathogenic Bacteria Associated With Vegetables & Advances in Their Control Strategies



Dr. Ranjitha K

Division of Post Harvest Technology

ICAR-Indian Institute of Horticultural Research, Bangalore





### **Treasure trove of nutrients**



- $\Box$  (CH<sub>2</sub>O)<sub>n</sub> Most vegetables,
- □ Proteins Legumes
- Antioxidants Phenolics, Vitamins
- Phytochemicals specific to the commodity



- □ Eg. Glucosinilates in cabbage, momordicin in bittergourd
- Dietary fibres : Most F&V
- □ Role in immunomodulation, possess functional properties –

antidiabetic, anticancerous, prebiotic



#### **Production scenario**





"Production and consumption forms a complex network; which makes quality control at consumer level difficult"

ICAR -IIHR.



### F&V consumption linked disease outbreaks





 128,000 hospitalization and 3000 deaths each year

46% of all food borne illnesses 1998-2008 were attributable to fresh produce

Leafy green vegetables as the highest priority in terms of fresh produce safety from a global perspective. (WHO, 2008).

## India lacks similar surveillance system; and the situation might be more precarious



### Pathogens of concern



Vegetable Outbreaks



http://www.cspinet.org



# FSANZ guidelines for microbiological examination of ready to eat foods



| Microorganisms                | Microbiological quality   |                                  |                                  |                       |
|-------------------------------|---------------------------|----------------------------------|----------------------------------|-----------------------|
|                               | Satisfact ory             | Marginal                         | Unsatisfactory                   | Potentially hazardous |
| APC                           | N/A                       | N/A                              | N/A                              | N/A                   |
| E.coli/g(indicator organisms) | <3                        | 3-100                            | >100                             | **                    |
| Salmonella sp.<br>/25g        | Not<br>detected<br>in 25g | -                                | -                                | Detected              |
| Listeria<br>monocytogenes     | Not<br>detected<br>in 25g | Detected but < 10 <sup>2</sup>   |                                  | >10 <sup>2</sup>      |
| Bacillus cereus/g             | <10 <sup>2</sup>          | 10 <sup>2-</sup> 10 <sup>3</sup> | 10 <sup>3</sup> -10 <sup>4</sup> | >10 <sup>4</sup>      |







#### Distribution of food borne pathogens in vegetables from Bangalore market



10+ (?) 0.4 %+ve

Listeria monocytogenes

•High no. of presumptive positives for enterobacteriaceae pathogens

•Could not detect *Bacillus cereus (n=75)* 

Yersinia enterocolitica



### **Routes of Contamination**





#### Contamination can happen at any point of production and handling



- □ Seed as source of contamination in seed sprouts
- Conducive environment for the multiplication of pathogens





# Do the human pathogens interact with plants : Cross kingdom pathogens?



- Salmonella and E coli gets internalized in the plant tissues-Chemotaxis
- Role of animal pathogenicity genes on the survival in plants is proven (Schikora et al., 2011)
- Immune suppression has been observed in Arabdiopsis infected with Salmonella
- □ A cross kingdom pathogen?



Internalization of E. coli in leaf stomata (Berger et al., 2010).





 The studies using standard MTCC strains showed the growth of *Listeria monocytogenes* MTCC839 and the mere survival of *Salmonella enterica* MTCC 3219 in the minimally processed cabbage at low temperature storage (7°C)



### **Control strategies**



- "Prevention is better than corrective measures"
- Good agricultural practices
- Quality of Irrigation water is most important
- □ Properly composted manure: Temperature
- sh'd reach between 55 and 77 ° C for 5 days
- Good Handling practices
- □ Washing is the critical control point
- Hygienic handling of the produce
- Proper storage









### Chlorine

Most popular decontaminant

□Available as hypochlorite, chlorite

□Effective in 50-200ppm for >1 minute exposure

□Efficacy is <2 log reductions. So not useful in pathogen elimination

□Standard for testing newer methods

Residual toxicity- So banned in fresh cut industry



In vitro inhibition of vegetable isolate of salmonella by chlorine





## **Chlorine dioxide**

- □ Max permitted concentration is 5ppm
- Results in 6 log reduction in bacterial count
- Tested against different pathogens in diverse F&V
- □ But requires treatment time 10minutes to 2hrs; Temperature >22 ° C.

## Peroxy acetic acid

□ 40-80 ppm recommended by FDA

Disinfection efficiency is similar to chlorine





### Ozone

- Disinfection capacity is equal to chlorine; but no residual effect.
- □ 5ppm is typically used
- Approved disinfection agent
- □ But corrosive, highly unstable, on site production is required
- Studies on using in packaging is under progress

### Hydrogen peroxide

□ No residue (GRAS), 0.5-2,5% is used

□ Cause browning



## Efficacy of disinfectants in removing Salmonella from fresh-cut cucumber



| Sanitizer             | After 6<br>days (cfu/g)<br>storage at<br>8 <sup>0</sup> C | Marketability<br>after 6 days |
|-----------------------|-----------------------------------------------------------|-------------------------------|
| Control               | 145X10 <sup>4</sup>                                       | 2/5                           |
| 100 ppm chlorine      | 12X10 <sup>2</sup>                                        | 3/5                           |
| 2000ppm $H_2O_2$      | 104×10 <sup>3</sup>                                       | 2/5                           |
| Calcium<br>propionate | 37×10 <sup>2</sup>                                        | 4/5                           |

population in the dip solution: 32X10<sup>6</sup>/ml in dip solution







- Gamma irradiation approved in leafy vegetables for E. coli & Salmonella decontamination (FDA, 1999, 2008).
- Up to 10k Gy is permitted. > 1 kGY is likely to affect the shelf life
- Presence of oxygen improves the sensitivity of organisms
- Initial washing is necessary
- Requires high investment
- UV radiations (200-280nm) are also germicidal on the surface





(Gomes et al, 2009)



### **Bio-preservation**



Lactic acid bacteria: Through competition, production of antimicrobials like bacteriocins, H<sub>2</sub>O<sub>2</sub>



In vitro inhibition of salmonella cultures by lactic acid bacteria



#### **Electrolyzed water**



- Generated by the electrolysis of a diluted NaCl solution passing through the anode of a membrane electrolyzer.
- AEW has a strong bactericidal effect on most known pathogenic bacteria due to its low pH (2–4) and high oxidation–reduction potential and because it also contains active oxidizers like hypochlorous acid



Hsu, 2003)



#### **Other methods**



- Detergent solutions
- Organic acids
- □ Electrostatic applications of organic acids, Ultrasound, Pulsed light
- " Decontamination efficacy is variable with type of produce, adhering particles, biofilm formation & extent of tissue damage"
- "Every sanitization method has some drawbacks"











- □ Yersinia enterocolitica :Grows at chilling temp
- □ Shigella sonneii & S. flexnerii: Diarrohea in children
- Bacillus cereus
- □ *Campylobacter :* diffuse, bloody, edematous, and exudative enterititis
- □ Staphylococcus aureus







### Salmonella: Most frequent pathogen in F&V



- □ Family : enterobacteriaceae
- □ Salmonella enterica are human pathogenic
- □ S. enterica has 6 subspecies &>2500 serotypes
- Causes non-typhoidal salmonellosis
- Responsible for 76%, 60% and 30% of outbreaks caused by fruits, seed sprouts and leafy vegetables, respectively
- □ Self limiting diarrhoea, abdominal cramps, fever
- □ Infectious dose 10-10000 cells
- □ Subclinical levels of population always present in cattle gut



### Pathogenic *E coli*



- □ Shigatoxigenic E. coli (STEC) is one of the pathotypes. It causes symptoms ranging from mild to severe and bloody diarrhoea.
- Enterohaemorrhagic E. coli (EHEC):subset of STEC typically associated with bloody diarrhoea and HUS, which produce cytotoxins, known as verotoxins (VT) or Shiga-like toxins (Stx).
- In relation to public health, E. coli (O157:H7) strain is the most important EHEC serotype linked to foodborne disease, resulting in a high incidence of EHEC infections and deaths each year.

Microbiological criteria for fresh produce by several countries insists the absence of E. coli (O157:H7) in the sampling unit of food





- □ Soil is natural habitat for many pathogens
- □ Eg. Bacillus cereus, L. mono, Campylobacter
- □ Animal manure adds to the load
- □ Eg. Salmonella and E coli population in feces ranges from 2-5 log cells
- Survival in solid manure : Campylobacter < Listeria < Salmonella < Ecoli O157:H7 (Nicholson et al., 2005)</p>
- Moist clayey soil enhances their survival chances
- □ Spray and flood irrigation increases the contamination levels



#### Listeria monocytogenes



- □ G +ve, facultative anaerobes, motile at <30 ° C
- Identified as foodborne in 1981 in Canada, where listeriosis was linked to the contaminated cabbage consumption
- Estimated 1,600 illnesses and 260 deaths in the United States (U.S.) annually.
- Psychrotrophic
- □ Infectious dose <10 cells



