

Consumers psychological reactions during a food safety incident and WTP for nanosensors in meat products

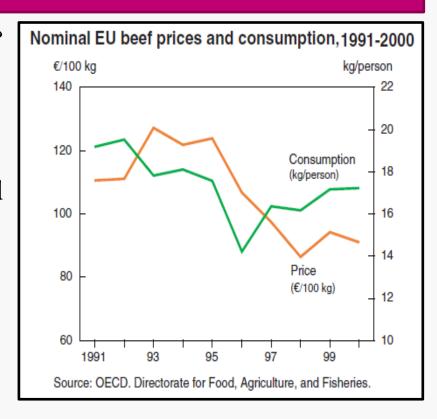
Junjie Wu & Giuseppe Nocella

Outline

- Background
- Research questions and objective
- Methodology
- Results
- Conclusions

Background (1/3)

Food containing hazardous agents, or contaminants, that can make people sick e.g. zoonotic diseases, microbial pathogens, parasites, microbials, antibiotic drug residues, pesticides residues and GMFs.


Mycotoxin	Commodity	Associated fungi		
Aflatoxins	Peanuts, pistachios and other nuts, corn, cottonseed, cereals	Aspergillus flavus A. parasiticus		
Fumonisins	Corn, other cereals	Fusarium verticillioides F. proliferatum		
Ochratoxin	Legumes, cereals, coffee beans	Aspergillus ochraceus Penicillium verrucosum		
Patulin	Apples, grapes, other fruits	Penicillium expansum Aspergillus giganteus other Penicillium and Aspergillus spp.		
Trichothecenes	Wheat, corn	Fusarium tricinctum F. poae, and other Fusaria and several other species		

Background (2/3)

What are the economic consequences of food borne diseases and scares?

- Costs for national health services?
 (£5.8 billion)
- Demand for indicted products?
- Demand for surrogates of indicted products?
- Reputation of firms involved?

Objectives

- 1. To evaluate consumers' psychological reactions under different risk situations caused by a food safety incident .
- 2. To estimate the willingness-to-pay for nano-sensor in meat products with and without a food safety incident.
- 3. To explore how SDE characteristics and psychological reactions of consumers influence purchasing behaviour.

Methodology (1/12)

- Qualitative research (focus groups)
- Quantitative research (questionnaire):
 - Shopping habits
 - Psychological reactions
 - CV market scenarios
 - SED characteristics

Different risk information administered in three different versions of the questionnaire: BAU, LR and HR.

Methodology (2/12)

High Risk information

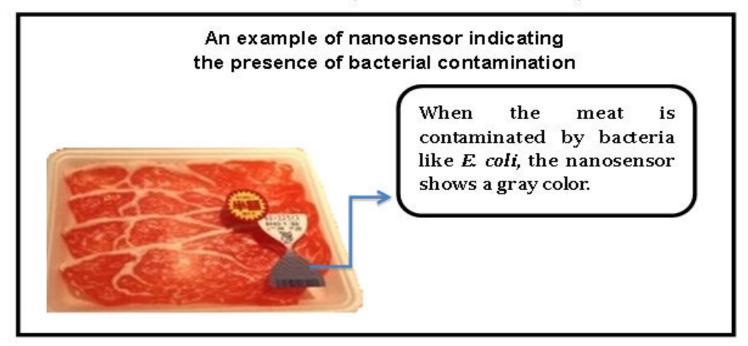
Imagine that yesterday a food safety incident caused by an outbreak of E.coli occurred in the UK and media report the following information:

E.coli are bacteria that live in the guts of animals and people and many strains of this bacteria are harmless to human beings. However, the E. coli strain O157:H7 can cause severe problems affecting the blood and kidney in a small number of people who get sick and may have serious health problems. These problems include anaemia, the formation of small blood clots, and kidney (renal) failure.

Possible sources of the E. coli infection include high-risk foods such as uncooked meat (especially chicken), unpasteurized milk or juices, restaurants where people infected with E.coli have eaten, exposure to live animals and recreational water such as swimming pools and lakes.

. . .

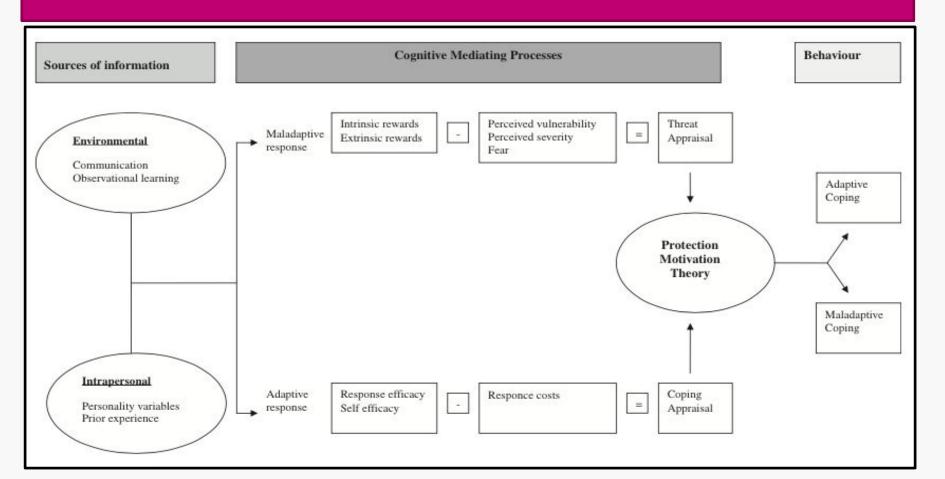
In the days following the scare more information is available from mass media. They report that following this outbreak 100 people in the UK had been admitted to hospital and 10 people had died after having consumed food which was probably contaminated. Media also report that there will be a 50% chance that the number of contaminated chicken in your supermarket will be 20 out of 100. However, consumers should not worry about consuming food and should apply the norms proposed by the World Health Organisation as shown in this picture below.


Methodology (3/12)

Market scenario introducing nanotechnology

Nanotechnology is a new technology which uses very small particles. These nanoparticles are a thousand times smaller than the size of a particle of sand. One of the potential applications of the nanotechnology in the food sector is in the development of new packaging materials such as nanosensors which can increase the safety of the food that we consume.

Nowadays even food that you buy in supermarkets is generally safe, packaging containing nanosensors is capable to communicate consumers whether a bacterial infection develops in the food that they have purchased. Essentially these nanosensors are stickers which change colour or flash a light when pathogens develop in the food that you store at home. The picture below shows how these nanosensors can communicate consumers the presence of E.coli in food products.



Methodology (4/12)

How were psychological reactions captured?

The conceptual framework (Protection Motivation Theory - Roger, 1985)

Methodology (5/12)

Possible outcomes of consumer purchasing behaviors in relation to combinations of PMT elements (Witte,1992)

	Perceived Threat						
		Low Threat	High Threat				
		No Response	Fear control				
Perceived	Low	(ignore the message and	(WTP for Nanosensors is				
	Efficacy	zero WTP for	lower than danger control)				
Efficacy	,	nanosensors)					
		Low Response	Danger control				
	High	(WTP lower than Danger	(Highest WTP for				
	Efficacy	control)	Nanosensors)				
	•						

Methodology (6/12)

Selected examples of how the PMT elements of the cognitive mediating process were measured.

Perceived severity

Health problems caused consuming meat contaminated by <i>E. coli</i> can reduce life expectancy.							
Completely Disagree Neither disagree Agree Completely							
disagree		nor agree		agree			

Perceived vulnerability

How likely or unlikely is that if I eat meat contaminated by E. coli I will die.						
Extremely unlikely	Unlikely	Likely	Extremely Likely			

Methodology (7/12)

Perceived self-efficacy

I am capable of finding supermarkets selling meat products containing nanosensors in the packaging.

Completely disagree	Disagree	Neither disagree nor agree	Agree	Completely agree

Perceived response efficacy

I believe that food products containing nanosensors can remove the risk of eating meat products contaminated by E.coli.

Completely	Disagree	Neither disagree nor Agree		Completely
disagree		agree		agree

Methodology (9/12)

Market scenario for nanosensors' WTP

WTP elicitation method (payment card)

Imagine that you are buying 1 kg of your usual meat on sale at the price £6.00. Please look at the monetary values in £ shown in the table below and indicate the **maximum amount of extra-money** that you are willing to pay for having the same meat packaged with nanosensors. Before answering, remember that your budget is limited and so spending more for meat packaged with nanosensors you will have less money to buy other goods.

© £0.05	© £0.55	© £1.05	© £1.55	© £2.05	© £2.55
⊚ £0.10	€0.60	⊚ £1.10	⊕ £1.60	⊚ £2.10	⊚ £2.60
© £0.15	© £0.65	© £1.15	© £1.65	⊚ £2.15	© £2.65
€0.20	© £0.70	€1.20	£1.70	⊚ £2.20	© £2.70
⊚ £0.25	© £0.75	⊚ £1.25	⊚ £1.75	⊚ £2.25	© £2.75
⊕ £0.30	© £0.80	⊚ £1.30	£1.80	⊚ £2.30	© £2.80
© £0.35	© £0.85	€1.35	£1.85	© £2.35	© £2.85
€0.40	© £0.90	£1.40	£1.90	⊚ £2.40	⊚ £2.90
© £0.45	© £0.95	€1.45	£1.95	⊚ £2.45	© £2.95
© £0.50	© £1.00 Dlagg specify f	£1.50	€2.00	© £2.50	© £3.00
More than £3.00	Please specify: £ _				

Methodology (10/12)

Data analysis (1/2)

Multivariate statistical analysis

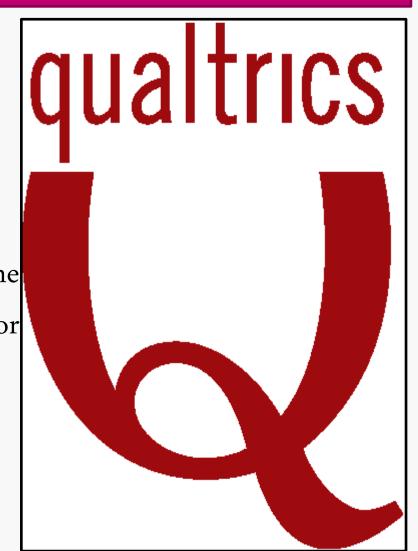
- To identify the underlying dimensions of PMT with and without food safety incident via factor analysis
- For each factor identified, the scores were calculated through the following general form equation: $PMT_i = \beta_{1i} X_{1i} + \beta_2 X_{2i} + ... + \beta_n X_{ni}$
- The identified underlying dimensions used in econometric analysis to see how they affect WTP for nanosensors

Methodology (11/12)

Data analysis (2/2)

Econometric analysis

- Tobit regression appropriate for analysing dependent variables that cannot take values below or above a particular analysis
- WTP for nanosensors shows a censored distribution with a large proportion of zero values as the lowest value
 - Among consumers with zero WTP, varying values of the independent variables imply different probabilities of experiencing a protest
 - For consumers who are WTP for nanosensors, varying values of the independent variables imply variation in the magnitude of the WTP


$$\begin{cases}
if X\beta + e > 0, then y = X\beta + e \\
if X\beta + e \leq 0, then y = 0
\end{cases}$$

Methodology (12/12)

Data collection

- Web survey via QUALTRICS
- Quota sampling
- Piloting February 2015
- Survey February/March 2015
- Filter questions to reach the population target and to control for the quality of data

Results (1/5)

Socio-demographic and economic (SED) characteristics

SED characteristics Scenarios	BAU N=209	Risk N=418	Total N = 627
Gender:			
- Female	105	210	315 (50.2%)
Age:			
- Under 25 years	29	58	87 (13.9%)
- 25-44 years	88	176	264 (42.1%)
- 35-54 years	55	110	165 (26.3%)
- 65 years and above	37	74	111 (17.7%)
Education:			
- High school or less	107 (51.2%)	219 (52.4%)	326 (52%)
 University degree or post. 	102 (48.8%)	199 (47.6%)	301 (48%)
Income (Household):			
- Less than £799	27 (12.9%)	47 (11.2%)	74 (11.8%)
- From £800 to £1599	56 (26.8%)	126 (30.1%)	182 (29%)
- From £1600 to 2399	47 (22.5%)	88 (21.2%)	135 (21.5%)
- From £2400 to £3199	41 (19.6%)	72 (17.2%)	113 (18%)
- From £3200 or more	38 (18.2%)	85 (20.3%)	123 (19.6%)
Occupation:			
- Employed	120 (57.4%)	251 (60.0%)	371 (59.2%)
- Unemployed	12 (5.7%)	27 (6.5%)	39 (6.2%)
- Housewife	25 (12.0%)	35 (8.5%)	60 (9.6%)
- Student	12 (5.7%)	22 (5.3%)	34 (5.4%)
- Retired	36 (17.2%)	74 (17.7%)	110 (17.5%)
Household Wellbeing:	111 (07 50())	000 (00 00()	40.4 (0.4 40()
- Difficult or modest	141 (67.5%)	263 (62.9%)	404 (64.4%)
- Reasonably well or better	68 (32.5%)	155 (37.1%)	223 (35.6%)

Results (2/5)

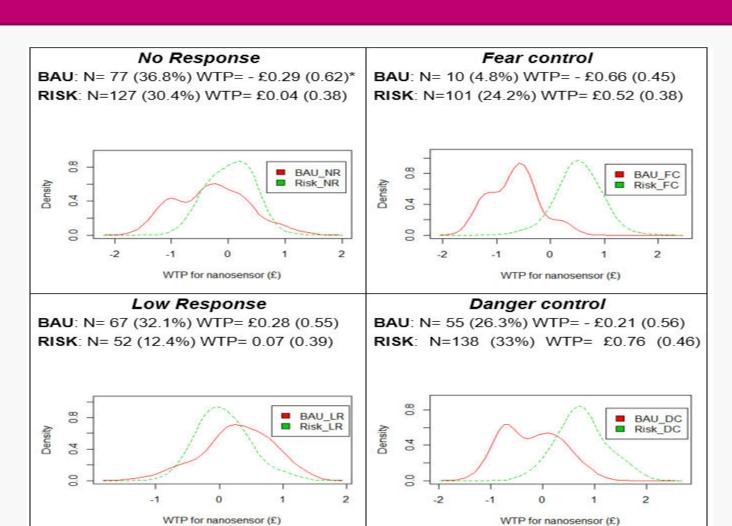
Cognitive change in two scenarios

Rotated component matrix of PMT items

		BAU S	cenario				Risk So	cen ario	
PMT					PMT				
Item s	CA	FEAR	SEV	VULN	Items	FEAR	CA	SEV	VULN
RESP_2	.825	.004	.128	.058	Fear_EAT	.939	.078	.084	.051
SELF_3	.687	.023	.227	294	Fear_COOK	.918	.058	.125	.066
SELF_2	.660	.009	120	.151	Fear_BUY	.900	.081	.129	.062
RESP_3	.654	.132	042	.208	RESP_2	.217	.709	.025	.110
RESP_1	.612	034	.047	.020	RESP_3	.220	.703	111	.214
SELF_1	.551	.016	.380	400	SELF_3	081	.667	.366	124
Fear_EAT	.040	.950	.075	.120	RESP_1	046	.667	106	059
Fear_COOK	012	.930	.054	.179	SELF_2	.040	.560	.104	.100
Fear_BUY	.089	.914	.050	.160	SELF_1	133	.511	.495	194
SEV_2	.090	.051	.850	.165	SEV_2	.166	.046	.802	.276
SEV_1	.030	.081	.787	046	SEV_1	.190	.005	.742	063
SEV_3	.039	.018	.691	.385	SEV_3	.076	.009	.604	.543
VULN_3	.117	. 109	.209	.849	VULN_3	.157	.091	.094	.878
VULN_2	.262	.191	.274	.721	VULN_2	.234	.173	.211	.765
VULN_1	063	.161	011	.288	VULN_1	072	026	048	.317
% Var.	25.20	17.61	12.25	8,78	% Var.	26.45	14.88	11.92	9.18
Cr. Alpha	0.78	0.77	0.76	0.75	Cr. Alpha	0.77	0.78	0.76	0.75

Results (3/5)

WTP for nanosensors in meat products


WTP for nanosensors for BAU and Risk scenarios

	BAU (n=209)	Risk (n=418)
WTP for nanosensors > £0.00	174 (83.3%)	353 (84.4%)
WTP=0 (cannot afford, already safety, believe cooking)	16 (7.7%)	23 (5.5%)
WTP=0 (not enough information, lack of trust it)	19 (9.1%)	42 (10%)
Mean	£0.69	£0.76

Results (4/5)

WTP for nanosensors in four outcomes of PMT

Results (5/5)

Determinants of WTP for nanosensors

		Mod	del 1 (Scenario o	f BAU)		Model 2 (Scena	rio of RISK)
	Variables		∂P(z)/∂x (Probability of being uncensored)	∂E(0 <y*) ∂x<br="">(the changes of uncensored)</y*)>	Adjusted coefficient	∂P(z)/∂x (Probability of being uncensored)	$\partial E(0 < y^*)/\partial x$ (the changes of uncensored)
SED	Constant	<u>-2.52</u>	-0.413	-0.63	-1.09	-0.397	-0.68
Characters		(4.21)			(2.82)***		
	GENDER	0.16 (1.24)	-0.083	-0.13	-0.18 (1.99)**	-0.040	-0.08
	EDU_Undergraduate	0.18 (1.28)	0.009	0.01	-0.07 (0.69)	0.007	0.01
	EDU_Postgraduate	0.03 (0.13)	0.001	0.0001	0.01 (0.09)	0.046	0.09
	AGE (25 to 44)	-0.01 (1.74)*	-0.140	-0.22	-0.01 (1.24)	-0.115	-0.23
	AGE (45 to 64)	-0.25 (1.83)*	-0.229	-0.33	-0.12 (1.22)	-0.148	-0.30
	AGE (65 or older)	0.10 (0.59)	-0.190	-0.27	-0.10 (0.80)	-0.087	-0.18
	Household_SIZE	0.19 (1.47)	0.007	0.01	-0.01 (0.14)	0.027	0.06
	Occupation	0.16 (0.94)	0.144	0.21	(0.20)	0.015	0.03
	Wellbeing_Modest	-0.12 (0.66)	-0.023	-0.04	0.05 (0.43)	-0.012	-0.02
	Wellbeing _WELL	-0.42 (2.05)**	-0.029	-0.05	0.22 (1.65)*	0.018	0.04
Shopping Experiences	PRICE KG	0.09 (1.76)*	0.048	0.08	0.04 (1.25)	0.019	0.04
•	EXP_TIME	-0.07 (1.12)	-0.004	-0.01	0.01 (0.14)	-0.004	-0.01
	HEARD Nano	-0.29 (2.11)**	-0.058	-0.09	0.17 (1.80)*	0.015	0.03
Psychological Constructs	Coping Appraisal	0.11 (3.71)***	0.028	0.05	0.01 (0.22)	0.021	0.04
(PMT)	FEAR	-0.03 (1.20)	0.014	0.02	0.07 (4.08)***	0.008	0.02
	Severity	0.18 (3.94)***	0.002	0.002	-0.11 (3.44)***	-0.001	-0.004
	Vulnerability	-0.29 (6.74)***	-0.003	-0.005	0.19 (7.49)***	0.015	0.03
Model statistic Log likelihood		-454.62			-6	553.68	
Sigma	2012012011	1.189***				947***	
Mean of WTP		-£0.10				E0.39	

Conclusions

- The cognitive process varies in the BAU and Risk scenarios (i.e. fear becomes the most important element of the PMT).
- The cognitive elements of the PMT have different impacts on the WTP of nanosensors in the BAU and Risk scenarios.
- The WTP of nanosensors was also affected by SED.
- The use of nanosensors could be a good strategy to mediate/reduce public concern and fear towards food safety incidents.
- More information about novel food products should be released by government institutions and medias to tackle the issue of consumers' uncertainty towards the novel product.