Thermochemical Recycling of Municipal Solid Waste

Juma Haydary

Department of Chemical and Biochemical Engineering Institute of Chemical and Environmental Engineering Faculty of Chemical and Food Technology

Slovak University of Technology in Bratislava, Slovakia

:::: S T U

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Slovak University of Technology in Bratislava

Faculty of Chemical and Food Technology

STU FCHPT

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Cyprus 2016

Institute of Chemical and Environmental Engineering

Reactor Engineering Reaserch Group

- Experimental study and mathematical modeling of fuel thermal processes
- Pyrolysis, gasification and combustion of solid fuels
- Biomass, polymer waste, MSW, and coal thermal and catalytic processing for production energy and materials

National center for research and application of renewable energy sources

Recycling 2016 Berlin

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

🗄 STU

Refuse-Derived Fuel (RDF)

RDF composition

Component	Material	w _i [kg/kg]
Paper	White paper, recycled paper	0,6317
Foil	LDPE, HDPE	0,1578
Plastics	Rigid plastics, polystyrene, polyurethane	0,1910
Textile	Polyamide, polyester, cotton , wool	0,0194

Recycling 2016 Berlin

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

:::: S T U

Proximate and Elemental Composition of RDF

Com.	Mois.	VM*	FC*	ASH*	С	н	N	S	O**
Wt. %	10	75.5	8.9	15.6	51.7	5.9	0.9	0.4	25.5

*moisture free basis
**calculated to 100%

:::: S T U

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Behaviour of Thermal decomposition

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Behaviour of Thermal decomposition

Recycling 2016 Berlin

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

:::: S T U

Heating value of RDF

Component	Heating value [kJ/kg]
Paper	13410
Foil	43860
Plastics	33570
Textile	19770
Mixed RDF	20810

:::: S T U

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Tar content measurement

Gasification Model

Assumptions:

- Steady state flow is considered inside the gasifier
- No temperature and concentration gradient exist inside the reactor
- The residence time is enough long to reach complete decomposition of RDF and unreacted part of RDF is only carbon.
- Only the major species are considered in the product gases, i.e CO, CO₂, H₂, CH₄ , H₂O, NH₃, H₂S, N₂ and Tar

SLOVEN UNIVER

Global material balance of RDF gasification

 $CH_{b}O_{c}N_{d}S_{e} + x_{1}O_{2} + x_{2}H_{2}O \rightarrow x_{3}CO + x_{4}CO_{2} + x_{5}H_{2} + x_{6}CH_{4} + x_{7}H_{2}O$ RDF $+x_{8}NH_{3} + x_{9}H_{2}S + x_{10}CH_{b1}O_{c1}N_{d1}S_{e1}$ TAR

Reactions:

$C+0, 5O_2 \longrightarrow CO$	$C + H_2 O \longleftrightarrow H_2 + CO$
$CO+0, 5O_2 \longrightarrow CO_2$	$C + CO_2 \longleftrightarrow 2CO$
$H_2 + 0,5O_2 \longrightarrow H_2O$	$CH_4 + H_2O \longleftrightarrow 3H_2 + CO$
$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$	$C+2H_2 \longrightarrow CH_4$
	$CO + H_2O \longleftrightarrow CO_2 + H_2$

Equilibrium constant:

$$K_{a} = \left(\frac{P}{P^{0}}\right)^{\sum v_{i}} \prod \phi_{i}^{v_{i}} \prod x_{i}^{v_{i}}$$

$$K_{a}^{298} = e \frac{-\Delta_{r} G^{298}}{RT} , \quad \Delta_{r} G^{298} = \Delta_{r} H^{298} - T\Delta_{r} S^{298}$$

$$\Delta_{r} H^{298} = \sum v_{i} \Delta_{f} H_{i}^{298} \qquad \Delta_{r} S^{298} = \sum v_{i} \Delta_{f} S_{i}^{298}$$

$$\Delta_{r} H = \Delta_{r} H^{298} + \sum v_{i} c_{pi} \cdot (T - 298) \qquad \Delta_{r} S = \Delta_{r} S^{298} + \sum v_{i} c_{pi} \cdot \ln \frac{T}{298}$$

Enthalpy balance:

$$H_{RDF} + H_{O2(air)} + H_{steam} + Q_R = H_{gas} + H_{ash} + H_C + Q_{loss}$$

 $Q_{R} = m_{RDF} \sum w_{i} Q_{i} - \sum (-\Delta_{c} H_{i}) n_{i} \qquad \text{IF, } T_{air} = T_{RDF} = T_{ref}, \text{ then } H_{RDF} = 0, H_{O2(air)} = 0$

$$T = T_{ref} + \frac{m_{RDF} \sum w_i Q_i - \left(\sum (-\Delta_c H_i) n_i\right) - Q_{loss}}{\left(\sum n_i c_{pi}\right) + m_C \overline{c}_{pC} + m_{ash} \overline{c}_{pash} - m_{steam} \overline{c}_{steam}}$$

 Q_{R} – heat of reaction [J],

 H_{RDF} – enthalpy of RDF feed [J],

$$H_{O2(air)}$$
 – enthalpy of oxygen and air respectively [J],

 H_{steam} – enthalpy of water steam [J],

 H_{gas} – enthalpy of gas [J],

$$H_{ash}$$
 – enthalpy of ash [J],

 \cdots S T

 H_{C} – enthalpy of unreacted carbon [J],

 Q_{loss} – heat losses from the reactor [J]

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAV *m*_{RDF}– mass flow of RDF feed [kg]

 n_i – mole flow of component i in the products [kmol]

 w_i – maas fraction of component *i* in the feed (paper, foil, plastics, textil

 Q_i – lower heating value of component *i* in the feed (paper, foil, plastics, textile) [Jkg⁻¹],

 $\Delta_{i}H_{i}$ - heat of combustion of component *i* in the products [Jkmol⁻¹]

m_{ash}– mass flow of ash [kg]

*m*_{ash}– mass flow of remaining carbon [kg]

m_{steam}- mass flow of steam [kg]

 \overline{c}_{pash} – specific heat capacity of ash [Jkg⁻¹K⁻¹]

 \overline{c}_{pc} – specific heat capacity of remaining carbon [Jkg⁻¹K⁻¹]

 \overline{c}_{psteam} – specific heat capacity of steam [Jkg-1K⁻¹]

Results of modelling RDF gasification

Observed parameters:

Conversion of RDF Reactor Temperature Gas composition Content of pollutants (NH3, H2S, TAR)

Variables:

🗄 S T U

Oxygen (air) to RDF mass ratio Steam to RDF mass ratio

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

SLOVENSKÁ TECHNICKÁ :::: S T U

UNIVERZITA V BRATISLAVE

Gasification of RDF Using O₂

Effect of RDF composition

Com.	Wt. %
Mois	10
VM	75.5
FC	8.9
ASH	15.6
С	51.7
Н	5.9
Ν	9.9
S	0.4
0	25.5

Com.	Wt. %
Mois	1.2
VM	80.22
FC	5.23
ASH	13.34
С	51.66
Н	8.82
Ν	9.66
S	0.08
0	25.42
	2J. 4 2

:::: S T U

Effect of Steam in RDF Gasification

Conclusion

- For RDF studied in this work,100% of RDF conversion in gasification by air was reached at m_{air}/m_{RDF}=2,2. However, the gas heating value was 4,4 MJ/Nm³
- Gasification of RDF using Oxygen enables production of a gas with heating value around 10 MJ/Nm³ at m_{O2}/m_{RDF}=0,45
- Elemental Composition of RDF has a crutial effect on riquired $m_{air}\!/m_{RDF}$
- Raw untreated gas tar content was 3.3 mass %; tar fraction content a solid phase insoluble in isopropanol
- By increasing the m_{steam}/m_{RDF} the content of H2 and CO₂ increased, However, the content of CO, reactor temperature and gas heating vale decreased

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE

Thank you for attention

