

namur nanosafety centre

Guidelines proposal for nanomaterials hemocompatibility

Julie Laloy

December 1st, 2014

Nanotek & Expo 2014 – San Francisco

Why studying hemocompatibility?

NP application domains

Why studying hemocompatibility? Applications in nanomedicine

Imaging

Drug delivery

Targeting

Diagnostic agent

Why studying hemocompatibility?

No OECD or other guidelines available Limited data from the literature

Oberdörster et al., **2005a** (*Review*) Oberdörster et al., **2005b** (*Review*) Nel et al., **2006**

From « Nanotoxicity » SC Sahu and DA Casciano – Ed Wiley - 2009

From « Nanotoxicity » SC Sahu and DA Casciano – Ed Wiley - 2009

Red blood cells hemolysis

Haemostatic system

Primary haemostasis (Platelets aggregation) Light transmission aggregometry (Turbidimetry) Impedance aggregometry (Multiplate® analyzer) Platelet function analysis (PFA-100®) Shear stress (Impact-R®) Electron microscopy (FEG-SEM, TEM) Secondary haemostasis (Coagulation) Chronometric assays (Clotting time assays) Chromogenic assays (Thrombin generation tests) Fibrinolysis Rotem®

Euglobulin clot lysis time

Nanoparticles recommanded by OECD for toxicological assessment

Fullerenes (C ₆₀)	Aluminium oxide (Al ₂ O ₃)	
Single-walled carbon nanotubes (SWCNT)	Titanium oxide (TiO ₂)	
Multi-walled carbon nanotubes (MWCNT)	Cerium oxide (CeO ₂)	
Silver nanoparticles (AgNP)	Zinc oxide (ZnO)	
Iron nanoparticles (FeNP)	Silicon dioxide (SiO ₂)	
Gold nanoparticles (AuNP)	Nanoclays	
Dendrimers		

→ NPs selected due to their worldwide distribution and their numerous applications

OECD, **2010**

NPs identification and characterization

Identification & related information	 Name Molecular structure Morphology Use Catalytic activity
	- Production process
Dhuring chaming lange antige	 Chemical composition Agglomeration/aggregation state Solubility, density, porosity
Physicochemical properties	- Crystal structure
material characterisation	 Particle size and its distribution Specific surface area Zeta potential Catalutic activity
	- Redox potential - Free radical inducer

→ Importance of NP physicochemical characterization for inter-studies comparison and understanding of their related toxic effects

Example of Silver NPs

Highly bactericide, highest commercialised NPs

Consumer applications :

Anti-odor socks Disinfectants, deodorants Water purificants Cosmetics Food contact materials (refrigerator surfaces, storage bags...)

Biomedical applications :

Coated on cardiovascular and neurosurgical catheters, orthopedic and cardiovascular implants, surgical instruments Wound and burn dressings Bone substitute biomaterials Perspectives for drug delivery systems and targeting

Example of Silver NPs

Since 19th century : use of « colloidal silver » to treat various diseases. These are silver nanoparticles.

Regular consumption of a large-particle silver compound is a likely causative agent of argyria

Are silver NPs hemocompatible?

Hemolysis : definition

- Red blood cells hemolysis : breakdown of the membrane
- Anemia, hypoxia...
- Major factor to be studied

Hemolysis : test

Red blood cells in contact with NPs, centrifugation, OD_{550 nm} measurement of the supernatant (hemoglobin)

- Mix RBC 10% (v/v) (190 $\mu L)$ and NP (10 $\mu L)$
- Shaking @ rt for 1h
- Centrifugation 5 min @ 10,000 g
- OD_{550 nm} measurement of the supernatant

Haemostatic system : definition

Steps of haemostasis : Primary haemostasis - Secondary haemostasis - Fibrinolysis

Primary haemostasis : definition

Steps of haemostasis : Primary haemostasis - Secondary haemostasis - Fibrinolysis

Primary haemostasis : assays

- Assessment of six functional tests to study the potential impact of NMs on platelet functions (adhesion/activation/aggregation)
- Techniques known as « quantitatives » :
 - Light transmission aggregometry (LTA)
 - Impedance aggregometry (Multiplate[®])
 - Platelet function analysis (PFA-100[®])
 - Shear stress (Impact-R[®])
- Techniques known as « qualitatives »:
 - Contrast microscopy,
 - Scanning (FEG-SEM) or transmission (TEM) electron microscopy

Light transmission aggregometry : principle

Turbidimetry measure : spectrophotometer (620 nm)

http://www.practical-haemostasis.com/

Light transmission aggregometry : protocol

Principle

Primary hemostasis : LTA

Light transmission aggregometry : no effect

Impedance aggregometry : Principle and interference

Whole blood impedance aggregometry

Electrode resistance enhanced by adhered platelet aggregates

- \rightarrow High variability
- ightarrow Adsorption of NPs on electrodes

Impact-R[®] : principle

Image analysis Monitoring Platelet Adhesion Cone & Plate Technology

Platelet adhesion and aggregation

Impact-R[®] : principle

Impact-R[®] : protocol

Validation of the technique using an inducer (collagen) and an inhibitor (β_2 -glycoprotein I) of platelet function and a negative control (tyrode buffer).

NP impact on platelet adhesion (SC) and the number of objects (Ob)

- → <u>MWCNT</u> and <u>CB</u> had an impact on <u>platelet aggregation</u> at 500 µg.mL⁻¹ by reducing the number of aggregates without affecting the surface covered. This effect disappered at 50 µg.mL⁻¹
- → SiC, TiC and SiO2 had no effect on Ob indicating that these 3 NPs had no impact on platelet function.

Scanning electron microscopy : validation

Whole blood alone Whole blood with β 2-glycoprotein I 1 um 1 µm С D 1 µm 10 µm

Whole blood with tyrode buffer Whole blood with Collagen

Scanning electron microscopy : validation

No clear difference can be observed between whole blood (A) and whole blood with the addition of collagen (D).

Tyrode buffer had no effect on platelet function (C).

A reduction of platelet adhesion was observed with β_2 -glycoprotein I (B).

Primary hemostasis : LTA

SEM pictures of platelets adhesion without (A-B) or with Ag NPs at a final concentration of 50 μ g/mL (C-D) : increased of adhesion

Conclusion of primary haemostasis

Nanotoxicology, 2013 Apr 15. [Epub ahead of print]

A comparison of six major platelet functional tests to assess the impact of carbon nanomaterials on platelet function: A practical guide.

Laloy J, Mullier F, Alpan L, Mejia J, Lucas S, Chatelain B, Toussaint O, Masereel B, Rolin S, Dogné JM.

Department of Pharmacy, Namur Nanosafety Center (NNC), NAmur MEdicine & Drug Innovation Center (NAMEDIC), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur (FUNDP), Namur , Belgium.

The Impact-R[®] method used in combination with FEG-SEM can be recommended for the evaluation of NP impact on platelet function / NPs

Haemostatic system : definition

Secondary haemostasis consists in the formation by the coagulation cascade of a fibrin network that stabilizes the platelet plug.

Coagulation cascade

Thrombin generation assay : principle

Thrombin activity measurement - cTGT

Inactivated thrombin

- A thrombin-specific fluorogenic substrate is added to clotting plasma
- Thrombin hydrolyzes AMC from substrate (Z-GGR-AMC)
- No linear relation between thrombin activity and fluorescence
 - \rightarrow thrombin calibration curve

Hemker et al., **2002** Hemker et al., **2003** Robert et al., **2009**

Secondary hemostasis - cTGT

The acquired data are automatically processed by the Thrombinoscope[®] software to give <u>thrombin generation curves</u> and measurement parameters as lag time, C_{max} , ETP et T_{max}

C_{max} = maximal concentration;
 Lag time = time for fibrin clot formation;
 ETP = endogenous thrombin potential

Hemker et al., 2002 Laloy et al., 2012

Thrombin generation assay : control parameters

	Lag time	C _{max}	ETP
	(min)	(nM)	(nM.min)
TF pathway	2.5	335	1650
TF and contact pathways	6.4	156	1262
Contact pathway	13.7	164	1146

C_{max} = maximal concentration;
 Lag time = time for fibrin clot formation;
 ETP = endogenous thrombin potential

Procoagulant activity

Laloy et al., 2014 Laloy et al., 2012

Nanotoxicology, 2012 Mar;6(2):213-32. doi: 10.3109/17435390.2011.569096. Epub 2011 Apr 13.

Validation of the calibrated thrombin generation test (cTGT) as the reference assay to evaluate the procoagulant activity of nanomaterials.

Laloy J, Robert S, Marbehant C, Mullier F, Mejia J, Piret JP, Lucas S, Chatelain B, Dogné JM, Toussaint O, Masereel B, Rolin S.

Department of Pharmacy, Drug Design & Discovery Center (D3C), Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), FUNDP-University of Namur, Namur, Belgium. julie.laloy@fundp.ac.be

"Thus, the cTGT appears as a reference assay to investigate the nanoparticle (NP) procoagulant activity in human plasma."

Fibrinolysis : definition

Fibrinolysis is the process by which fibrin is removed from damaged blood vessels.

Fibrinolysis : assays

Overall assays Euglobulin clot lysis time (Von Kaulla) Rotem[®]

Specific assays

D-Dimer Assay Plasminogen Assay Alpha-2-Antiplasmin (Alpha-2-Plasmin Inhibitor) Assay Plasminogen/antiplasmin Assay T-PA Assay PAI-1 Assay TAFI Assay

Specific assays could not be used in vitro.

Principle : Acidification and dilution of plasma causes precipitation of euglobulins (fibrinogen, activator of plasminogen, plasminogen) \rightarrow quicker evalution of fibrinolysis.

Key: t-PA - tissue plasminoge activator; u-PA - urinary plasminogen activator; XL-Fibrin - cross-linked fibrin; TAFI - Thrombin Activatable Fibrinolytic Inhibitor.

Plasma collected, diluted with acetic acid and incubated on ice for 15 minutes and then centrifuged.

A precipitate forms [the euglobulin fraction of plasma] which contains plasminogen, plasminogen activators [primarily t-PA] and fibrinogen.

Euglobulin clot lysis time : principle

Precipitate of euglobulins diluted and placed in a cuvette.

Thrombin is added.

The machine measures the time to clot lysis by infrared (890 nm)

Reference :

- Normal : 210 540 min
- Hyperfibrinolysis : < 30 min
- Hypofibrinolysis : > 540 min

Euglobulin clot lysis time : results

Ag NP_s

Conclusions

- Silver NPs :
 - hemolytic potential
 - procoagulant activity
 - Induction of platelet adhesion
- Impact on applications :
 - Local exposure : benefits (platelets, cicatrisation...)
 - Systemic exposure : Safety margins

Nanomaterials and Nanotechnology Impact of Silver Nanoparticles on Haemolysis, Platelet Function and Coagulation Original Research Article

Julie Laloy_{1,#,*}, Valentine Minet_{1,#}, Lutfiye Alpan₁, François Mullier_{1,2}, Sonja Beken₃, Olivier Toussaint₄, Stéphane Lucas₅ and Jean-Michel Dogné₁

Received 22 Aug 2014; Accepted 18 Sep 2014 DOI: 10.5772/59346

Introduction - Hemocompatibility – Hemolysis - Hemostasis - Perspectives

Department of Pharmacy

UNIVERSITE DE NAMUR

Avec le soutien de la DGO6 Département du Développement Technologique

julie.laloy@unamur.be

