About OMICS Group

 OMICS Group is an amalgamation of Open Access Publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 500 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 500 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

OMICS International Conferences

OMICS International is a pioneer and leading science event organizer, which publishes around 500 open access journals and conducts over 500 Medical, Clinical, Engineering, Life Sciences, Pharma scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

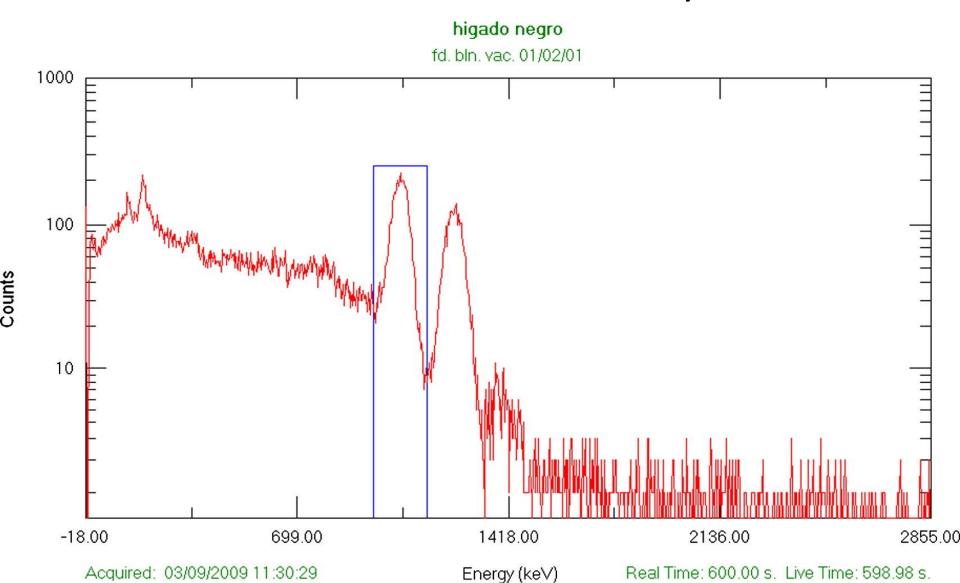
OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

International Conference and Expo on Drug Discovery & Designing

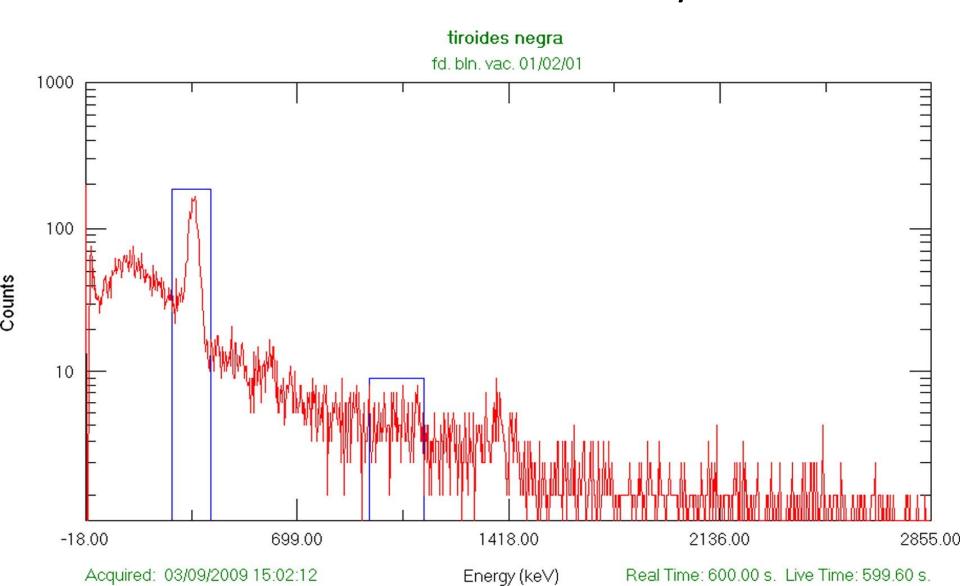
Fulvi-H as possible treatment for viral diseases

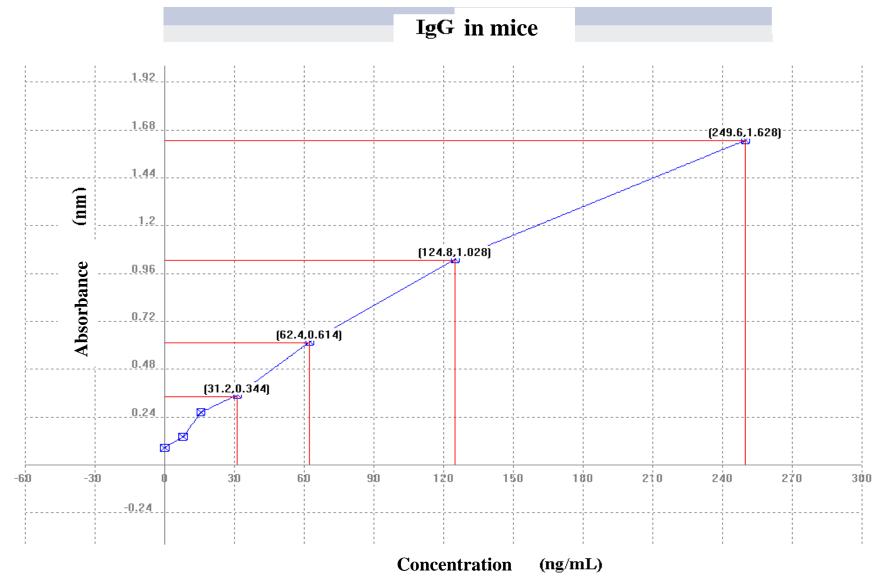
Frankfurt, Germany, August 11-12, 2015

Juan Manuel Navarrete Tejero como Omar Yahir Morales Isabel Gracia Mora Miguel Angel Zúñiga Pérez


FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA
DE MÉXICO

Structural Model of Fulvic acids, and reactive terminals


Two groups of rats, drinking plain water and fulvic acids solution respectively


Iron labeled with ⁵⁹Fe, present in blood red cells, more than double when escorted by fulvic acids

Iodine labeled with ¹³¹I, present in thyroid gland, more than double when escorted by Fulvic acids

Elisa standard curve of IgG in mice

Refractometer and scale used to measure IgT in rats blood serum

Table 2. Weight loss in mice during 2 months with and without FA.

	With FA	Without FA
Mice	Weight (g)	Weight (g)
1	43.6	42.6
2	40.2	41.6
3	43.7	52.6
4	43.8	43.8
5	40.8	41.1
6	38.4	45.2
7	44.8	40.5
8	45.7	44.4
9		45.4
10		43.7
Average (X)	42.52±2.1	44.09±2.5
Std. Dev. (σ)	2.527	3.431

weightloss=
$$\frac{44.09-42.52}{42.52} \times 100 = 3.7\%$$

Table 3. Concentration of mice IgG without FA, with FA and with FA + minerals, concentration of FA = 6.75 mg/mL (1/100 of saturation).

17.7±7.7

9.201

	Without FA	With FA	With FA + minerals
Mice	IgG (mg/mL)	IgG (mg/mL)	IgG (mg/mL)
1	8.296	18.280	12.049
2	11.215	41.919	13.814
3	7.593	30.131	19.283
4	15.223	17.419	38.047
5	2.528	12.381	14.156
6	2.636	15.955	22.662
7	4.072	27.439	11.906
8	3.457	37.187	10.053

39.531

26.6±8.6

11.158

2.590

6.4±3.5

4.524

9

Average (X)

Std. Dev. (σ)

Table 4. Concentration of mice IgT without FA, with FA and with FA + minerals, concentration of FA = 6.75 mg/mL (1/100 of saturation).

TTT-ALL TTA

76

72

70

68

69.66±3.21

4.183

62

70

68

66.50±2.93

3.505

	Without FA	With FA	With FA + minerals
Mice	IgT (mg/mL)	IgT (mg/mL)	IgT (mg/mL)
1	58	66	66
2	62	68	70
3	48	66	70
4	62	76	62
5	54	65	70

60

70

72

61

60.75±6.56

7.851

6

8

9

Average (X)

Std. Dev. (σ)

With FA

IgT increment
$$\frac{69.66-60.75}{60.75} \times 100 = 14.66\%$$
 IgG increment $\frac{26.6-6.4}{6.4} \times 100 = 315.62\%$

With FA + minerals

IgTincremen#
$$\frac{66.5 - 60.75}{60.75} \times 100 = 9.46\%$$
 IgGincremen# $\frac{17.4 - 6.4}{6.4} \times 100 = 171.87\%$

Without FA With FA With FA + minera					
of saturation).					
and with FA + minerals, concentration of FA = 6.75 mg/mL (1/111					
Table 5. Weight gain in mice during 2 months without FA, with FA					

Initial

26.8

28.7

27.2

27.7

27.3

30.5

26.3

27.9

27.0

27.7±0.96

1.252

 $weightincrement without FA = \frac{42.8 - 27.0}{27.0} \times 100 = 58.52\% \qquad weightincrement with FA = \frac{40.9 - 27.7}{27.7} \times 100 = 47.65\%$

 $weightincrementwith FA + minerals = \frac{43.5 - 28.4}{28.4} \times 100 = 53.16\%$

Final

44.2

44.8

41.5

44.5

41.6

39.7

38.9

41.2

32.0

40.9±3.03

3.947

Initial

28.6

27.7

29.4

28.5

28.6

28.6

28.1

28.6

27.7

28.4±0.40

0.528

Final

43.4

42.2

41.8

43.9

45.2

43.1

42.2

46.6

43.5±1.38

1.650

and with FA + minerals, concentration of FA = 6.75 mg/mL (1/111				
of saturation).				
Without FA With FA With FA + n				
	Weight (g)	Weight (g)	Weight (g)	

Final

45.3

41.8

45.9

45.8

42.0

41.8

44.9

41.3

37.2

42.8±2.19

2.861

Mice

2

3

4

5

6

7

8

9

Average (X)

Std. Dev. (σ)

Initial

27.0

26.8

26.7

26.9

26.5

27.8

28.9

26.3

26.2

27.0±0.65

0.849

Table 6. Mineral concentrations added to FA.

Salt	Mineral	Concentration (mg/mL)
FeSO ₄ ·7H ₂ O	$\mathrm{Fe^{2+}}$	0.0372
$MgSO_4 \cdot 7H_2O$	Mg^{2+}	0.0182
CaCl ₂ ·2H ₂ O	Ca^{2+}	0.0505
K ₂ HPO ₄	\mathbf{K}^{+}	0.0851
$MnCl_2 \cdot 4H_2O$	Mn ²⁺	0.0024
Na_2SeO_4	Se^{6+}	0.0041
KI	I-	0.1528

Table 7. Table 7. IgT initial and final concentration in rats after 2

months with and without FA, concentration of FA = 10 mg/mL (1/75 of saturation).					
	Without FA With FA				
	IgT (mg/mL)			IgT (mg/mL)	
Rats	Initial	Final	Rats	Initial	Final
1	66	68	11	70	70
2	70	69	12	65	70
3	66	63	13	68	68

67.5±1.79

2.50

Average (X)

Std. Dev. (σ)

66±2.13

2.98

Average (X)
$$60\pm2.13$$
 67.5 ± 1.79 Average (X) 64.3 ± 2.38 70 ± 1.01 Std. Dev. (σ) 2.98 2.50 Std. Dev. (σ) 3.33 1.41 IgT incrementwithout FA = $\frac{67.5-66}{66} \times 100 = 2.3\%$ IgT incrementwith FA = $\frac{70-64.3}{64.3} \times 100 = 8.86\%$

Average (X)

Std. Dev. (σ)

64.3±2.38

3.33

Table 8. Initial and final weights after 2 months with and without FA, concentration of FA = 10 mg/mL (1/75 of saturation).

	Without FA		Without FA			With FA	
	Weight (g)			Weight (g)			
Rats	Initial	Final	Rats	Initial	Final		
1	303	400	11	311	400		
2	324	409	12	305	396		
3	310	424	13	305	411		
4	307	396	14	302	377		
5	301	409	15	315	382		
6	312	468	16	312	414		
7	280	396	17	311	379		
8	316	463	18	302	405		
9	323	416	19	303	379		
10	325	431	20	313	374		
Average (X)	309.9±9.58	421.2±18.6	Average (X)	307.9±3.56	391.7±10.87		
Std. Dev. (σ)	13.39	26	Std. Dev. (σ)	4.97	15.2		

weightincrementwithoutFA = $\frac{421.2 - 309.9}{309.9} \times 100 = 35.91\%$

weightincrement with FA = $\frac{391.7 - 307.9}{307.9} \times 100 = 27.21\%$

Fig. 16.- Shuligat (India), Mumiyo (Nepal), natural mushroom used empirically for injuring treatment after centuries.

Conclusion: Fulvic acids seems to be a suitable treatment for virus infection diseases, such as hepatitis, HIV, herpes Zoster. Therefore, this research seems to deserve a reliable medical protocol to apply this treatment to human beings.

LET US MEET AGAIN...

We welcome you to our future conferences of OMICS International

2nd International Conference and Expo

on

Drug Discovery & Designing

On

October -31 November-02, 2016 at Istanbul, Turkey

http://drug-discovery.pharmaceuticalconferences.com/

Thank you very much for your attention and for being here!!!