Bimetallic Nanostars (Ag@Au) with High Surface Enhanced Raman Scattering (SERS) Performance: Detection of β-Amyloid and Its Marker Thioflavin T

> GARCÍA-LEIS, A. GARCÍA-RAMOS, J.V. SÁNCHEZ-CORTÉS, S.

> > jvicente.g.ramos@csic.es

INSTITUTO DE ESTRUCTURA DE LA MATERIA SERRANO 121, 28006. MADRID-SPAIN

4th International Conference on Nanotek and Expo

San Francisco, USA December 01-03, 2014

Introduction

Fabrication and Characterization of SERS substrates Nanostars Synthesis Characterization Alzheimer Disease Markers β-amyloid Direct SERS Detection Dyes (Congo Red and Thioflavin T) SERS characterization ThT - β-amyloid interaction Indirect SERS Detection of β-amyloid Tailoring the size and shape of Silver Nanostars

Ag@AuNS using AgNS as seeds

Conclusions

Surface Enhanced Raman Spectroscopy

Metal nanostructures

Colloids

Need external aggregation to detect low concentrations Non reproducibility Variation in signal/noise

SERS sensitive substrates with complex morphology

Enhanced Electromagnetic Field

Nano-Stars and nano-spheres Fabrication

AgNO₃ or HAuCl₄* 3H₂O

Hydroxylamine

Citrate Borohydride Hydrochloride Hydroxylamine

Nano-Stars NS-Ag / NS-Ag@Au

Nanospheres

Characterization of nanoparticles

Nanospheres

AgCT (SEM)

(TEM and SEM characterization)

TEM

200 nm

(TEM and SEM characterization)

SERS active substrates <u>without</u> aggregation!!

SERS active substrates <u>without</u> aggregation!!

(Dark-Field scattering)

Nano-stars

Nanospheres

SERS activity using probenecid (sulfamide) as probe molecule

A. Garcia-Leis, J.V. Garcia-Ramos and S. Sanchez-Cortes. JPC C. (2013) DOI: 10.1021/jp401737y

Tailoring the size and shape of Silver Nanostars

Preparation of a colloidal suspension of Silver Nano Stars

Chemical reduction of Ag⁺ in two steps:

Step 1: Reduction agent is a neutral Hydroxilamine solution

Step 2: After a time T1, a 1% citrate solution is added.

The great novelty of this method is the use of neutral HA and the no use of strong surfactant agents.

[HA] = concentration of hydroxylamine solution
[Ag+] = concentration of silver nitrate solution
V(CIT) = added volume of 1% citrate solution
T1 = the waiting time before adding the CIT solution

PCA graphic of scores and loadings of data obtained from morphological features of 24 AgNS samples.

PCA data can be classified in seven groups formed by samples with similar features depending of: size (bigger or smaller), type of arm (longer or shorter) and type of tip (spiky or rounded).

Extinction Spectra

Scheme of possible mechanism of growing nanoparticles based on TEM images.

SERS spectra of thiophenol at 1μ M on different colloids samples of AgNS: a) 105, b) 205, c) 305, d) 405, e) 505, f) 605, g) 705, h) 805 and i) Raman spectra of pure thiophenol. Excitation 532 nm.

 CONCLUSIONS: The reported fabrication method gives rise to silver star-shaped nanoparticles with good plasmonic properties to afford a large SERS intensification. The PCA study allowed the lump together of NPs by different groups, taking account the morphological parameters. The best Ag NS according to SERS EF are those bearing an intermediate size (200 nm) displaying a moderate number of arms.

Final morphology of Ag@AuNS using AgNS as seeds

Concentrations of reagents employed for the preparation of samples A-E and final pH of colloids solutions.

[Reagent]/ mM	А	В	С	D	Е
[AgNO ₃]	0.073	0.37	0.73	0	0
[HAuCl ₄ ·3H ₂ O]	0.27	0.27	0.27	0.4	0.2
[HA]	3.0	3.0	3.0	3.0	0
[CIT]	0.26	0.26	0.26	0.26	0.77
рН	5.0	5.0	4.7	4.4	5.5

Micrograph of Ag@Au NS obtained by TEM of A (A), B (B), C (C) and (D) is a general view of sample C. (E) SEM micrograph of Sample C. (F) EDX spectra of Sample C.

Extinction spectra (left) and TEM images (right) corresponding to the samples: A (a), B (b), C (c), D (d) and E (e).*Inset:* Pictures of the colloids obtained by methods A, B, C, D and E.

Dark-field (DF) hyperspectral image

Spectral angle mapper (SAM) image

SERS enhancement dependence on the excitation wavelength and the substrate: 532 nm (a) and 785 nm (b). Chemical formula of ThT (c). Adsorption isotherm of ThT on sample B (d). Raman spectrum of ThT 10 mM (e). SERS spectrum of ThT 1 μ M on sample B (g) and sample E (g). Excitation 785 nm.

SERS spectra of ThT on Samples A and C exciting at 532nm (b and d, respectively) and 785nm on Sample A (a). The extinction spectra of samples A (c) and C (e) and the absorption spectrum of ThT (0.1 M) in water (f) is also shown for comparison.

Alzheimer disease

Peptide with 36-43 aa

Histological dyes used to demonstrate the presence of amyloidal deposits in tissue

β–amyloid (1-42)

Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-IIe-IIe-Gly-Leu-Met-Val-Gly-Gly-Val-Val-IIe-Ala

SERS of β -amyloid(1-42) on Silver Nano-Stars

Wavenumber / cm ⁻¹				
Solid Raman (λexc.= 633 nm)	SERS NSAg pH 9 (633nm)	SERS AgCT pH 9 (785nm)	Assignments	
1669 vs	-	-	Am I	
-	1623	1623	ν(C=O)	
1606 m	-	-	Phe, v(C=C)	
1585 w	1595	1581	Phe, Tyr	
1565 w	1558	1567	Am II	
-	1483	1494	His	
1469 sh	1463	-	His (deprotonated)	
1444 s	1433	1441	$\delta(CH_2), \delta(CH_3)$	
1408 sh	1413	1401	$\delta(C_{\alpha}-H)$	
-	1344	1347	$t_w(CH_2)$ or $\rho(CH_2)$	
1264 w	1261	1268	Am III (Rishaat)	
1236 w	1237	-	Amm (p-sheet)	
1185 vw	1191	-	Phe, Tyr	
1179 w	1172	1171	<mark>ω(С-С)</mark>	
1123 w	1127	1128	v (C-C)	
1091 vw	1091	-	His, Lys, Arg	
-	1068	1064	v(C-C) aliphatic side chains	
1031 m	-	1034	Phe	
1003 vs	-	1001	Phe	
969vw	968	961	δ _{οp} (=C-H)	

Poor SERS spectra to be used for β-amyloid direct detection!!!

Use of Dyes to detect amyloid fibril formation

Congo Red

Thioflavin T

Detection of Congo Red by SERS

Detection of Thioflavin T by SERS

NS-Ag@Au

Published in: Eduardo Lopez-Tobar; Marian Antalik; Daniel Jancura; Maria Vega Cañamares; Adianez García-Leis; Diana Fedunova; Gabriela Fabriciova; Santiago Sanchez-Cortes; J. Phys. Chem. C 2013, 117, 3996-4005. DOI: 10.1021/jp310619c Copyright © 2013 American Chemical Society

Detection by SERS

Langmuir Adsorption Isotherm $I_{s} = \frac{K_{ad} I_{sm} [Analyte]}{1 + K_{ad} [Analyte]}$

 I_s - SERS Intensity K_{ad} - Adsorption constant I_{sm} - Maximum concentration of adsorbed analyte [Analyte]- Molecule concentration

Concentration (10⁻⁴ M - 10⁻⁹ M)
 λ excitation (532 nm, 785 and 633 nm)

Detection by SERS

Langmuir adsorption isotherm

Absorption spectra of the studied systems

ThT- β-amyloid complex

The effect of [β-amyloid] on the SERS spectra on Ag nanostars

NSAg + ThT (10^{-5} M) + β -Am (1-42)

Conclusions

- A simple method of nanostructure fabrication with high sensitivity in SERS technique has been developed.
- This method allows higher reproducibility in SERS measurements
 without aggregation.
- Congo Red and Thioflavine T dyes were detected at low concentrations.
- The adsorption isotherm of ThT over nano-stars follows a
 Langmuir model
- ✓ **SERS of** β **-amyloid** peptide has been obtained through its interaction with ThT.

CSIC: Consejo Superior de Investigaciones Científicas

Instituto de Estructura de la Materia Spectroscopy of Surfaces and Plasmon Photonics Group:

José V. Garcia-Ramos

Santiago Sánchez-Cortés

José A. Sanchez-Gil

Sagrario Martínez-Ramirez

M. Vega Cañamares

Paz Sevilla

Adianez García-Leis

Elisa Corda

Diego Romero Abujetas

Eduardo López Tobar

Acknowledgements

Ministerio de Economía y Competitividad Project FIS2010-15405

