Urban Mining: the way to reach a real sustainability

Jorge Castilla Gómez, PhD
jorge.castilla@upm.es

Madrid School of Mines and Energy
Technical University of Madrid (UPM) - Spain
CONTENTS
• Global demand of raw materials.
• Sustainable mining.
• Life Cycle Assessment.
• Urban Mining.
• Recycling.
• Conclusions/Challenges
Global demand of raw materials

• Minerals are essential to everyday life, making up numerous products.
• They are also vital raw materials in a large number of industries.
• Since the late 20th century, the decreasing depletion of natural resources due to strong economic growth has become a particularly acute issue.
Global demand of raw materials
Global demand of raw materials

ELEMENTS OF A SMARTPHONE

SCREEN

Indium tin oxide is a mixture of indium oxide and tin oxide, used in a transparent film in the screen that conducts electricity. This allows the screen to function as a touch screen.

The glass used on the majority of smartphones is an aluminosilicate glass, composed of a mix of alumina (Al_2O_3) and silica (SiO_2). This glass also contains potassium ions, which help to strengthen it.

A variety of Rare Earth Element compounds are used in small quantities to produce the colours in the smartphone's screen. Some compounds are also used to reduce UV light penetration into the phone.

ELECTRONICS

Copper is used for wiring in the phone, whilst copper, gold and silver are the major metals from which microelectrical components are fashioned. Tantalum is the major component of micro-capacitors.

Nickel is used in the microphone as well as for other electrical connections. Alloys including the elements praseodymium, gadolinium and neodymium are used in the magnets in the speaker and microphone. Neodymium, terbium and dysprosium are used in the vibration unit.

Pure silicon is used to manufacture the chip in the phone. It is oxidised to produce non-conducting regions, then other elements are added in order to allow the chip to conduct electricity.

Tin & lead are used to solder electronics in the phone. Newer lead-free solders use a mix of tin, copper and silver.

BATTERY

The majority of phones use lithium ion batteries, which are composed of lithium cobalt oxide as a positive electrode and graphite (carbon) as the negative electrode. Some batteries use other metals, such as manganese, in place of cobalt. The battery's casing is made of aluminium.

Magnesium compounds are alloyed to make some phone cases, whilst many are made of plastics. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.

CASING
Sustainable Mining

• Definition of **Sustainable Development** (Brundtland): “…Development that meets the needs of the present without compromising the ability of future generations to meet their own needs”.

• Appropriate management of non-renewable resources extracted by this sector of the economy has been one of the key issues in debates about **sustainability**.

• Reasons include the finite nature of non-renewables; the diverse environmental impacts associated with their extraction and use; the economic importance of the primary extraction; and the social impacts on local communities associated with mining activities.
Sustainable Mining

• At first “sustainable mining” could be perceived as a paradox, because minerals are widely held to be finite resources with rising consumption causing pressure on known resources.

• The true sustainability of mineral resources, however, is a much more complex picture and involves exploration, technology, economics, social and environmental issues, and advancing scientific knowledge, predicting future sustainability is therefore not a simple task.

• The context for sustainable development for mining is to balance the potential environmental and social risks with the economic risks.
Sustainable Mining

- Economy
- Efficiency
- Environment
- Safety
- Community

Sustainable Mining Practices
Life cycle Assessment

• Life Cycle Assessment (LCA) is an analytical tool that captures the overall environmental impacts of a product, process or human activity from raw material acquisition, through production and use, to waste management.

• Life cycle assessment (LCA) is an evaluation method that estimates the energy and environmental burden of a process or an activity by identifying and assessing the resources consumed and the emission and waste released in the environment.
Life cycle Assessment
Life cycle Assessment
Life cycle Assessment
Urban Mining

• The concept of Urban Mining concerns all the activities and processes of reclaiming compounds, energy and elements from products, buildings and waste generated.

• Mining and Recycling are complimentary to secure metal supply for infrastructure and products.
Urban Mining

- Massive shift from geological resources to anthropogenic “deposits”
 - Electric & electronic equipment (EEE)
 - Over 40% of world mine production of copper, tin, antimony, indium, ruthenium & rare earths are annually used in EEE.
 - Mobile phones & computer
 - Account for 4% world mine production of gold and silver and for 20% of palladium & cobalt.
 - Cars
 - >60% of PGM mine production goes into autocatalyst, increasing significance for electronics and light metals.
Urban Mining

• In the last 30 years we extracted >80% of REE, PGM, Ga, In, … that have ever been mined.

• Clean energy technologies & other high tech applications will further accelerate demand for technology metals (precious metals, semiconductors, rare earths, refractory metals,…)

• Without access to these metals no sustainable development can be achieved.
Urban Mining

• The Urban Mining “deposits” can be much richer than primary mining ores:

Primary mining
- ~ 5 g/t Au in ore
- Similar for PGMs

Urban mining
- 200 g/t Au, 80 g/t Pd & Cu, Sn, Sb, … in PC motherboards
- 300 g/t Au, 100 g/t Pd … in cell phones
- 2,000 g/t PGM in automotive catalysts
Recycling

• Recycling is considered as core element of the sustainable development.
• To tackle the depletion of natural resources, recycling policies and legislation have been put in place to ensure a sustainable development.
• The recycling industry itself, however, requires inputs of primary resources, which makes its environmental performance dependent on the chemical, physical and thermodynamical limits of the process.
Recycling

Limiting Factors in Recycling

• Collection of recycled material streams
• Limitations are set by nature, such as physics, chemistry, metallurgy and thermodynamics.
• Relationship between quality and recovery of a given metal or metals.
• Products to be recycled must be separated into suitable streams as soon as possible.
• Inevitable losses.
Conclusions / Challenges

• Collection of recycled material streams.
• Limitations are set by nature, such as physics, chemistry, metallurgy and thermodynamics.
• Relationship between quality and recovery of a given metal or metals.
• Products to be recycled must be separated into suitable streams as soon as possible.
• Inevitable losses.
• Recovery and recycling of cell phones are in the early stages of development.

“There are more gold in one tone of iPhones than in one tone on rock.”
REFERENCES

REFERENCES

Urban Mining: the way to reach a real sustainability

Jorge Castilla-Gómez, PhD
jorge.castilla@upm.es

Madrid School of Mines and Energy
Technical University of Madrid (UPM) - Spain