About OMICS Group

OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of making the information on Sciences and technology 'Open Access', OMICS Group publishes 400 online open access scholarly journals in all aspects of Science, Engineering, Management and Technology journals. OMICS Group has been instrumental in taking the knowledge on Science & technology to the doorsteps of ordinary men and women. Research Scholars, Students, Libraries, Educational Institutions, Research centers and the industry are main stakeholders that benefitted greatly from this knowledge dissemination. OMICS Group also organizes 300 International conferences annually across the globe, where knowledge transfer takes place through debates, round table discussions, poster presentations, workshops, symposia and exhibitions.

About OMICS Group Conferences

OMICS Group International is a pioneer and leading science event organizer, which publishes around 400 open access journals and conducts over 300 Medical, Clinical, Engineering, Life Sciences, Phrama scientific conferences all over the globe annually with the support of more than 1000 scientific associations and 30,000 editorial board members and 3.5 million followers to its credit.

OMICS Group has organized 500 conferences, workshops and national symposiums across the major cities including San Francisco, Las Vegas, San Antonio, Omaha, Orlando, Raleigh, Santa Clara, Chicago, Philadelphia, Baltimore, United Kingdom, Valencia, Dubai, Beijing, Hyderabad, Bengaluru and Mumbai.

Finding the innovation in green chemistry/engineering

John A. Glaser National Risk Management Research Laboratory Cincinnati, OH 45268

International Summit on the Past and Present Research Systems of Green Chemistry Philadelphia, PA

August 25-27, 2014

Innovation

 Sustainability – meeting the needs of current generations without sacrificing the ability to meet the needs of future generations

Green chemistry – transformative framework

"Green chemistry and engineering seek to maximize efficiency and minimize health and

environmental hazards throughout the chemical production process"

Annu Rev Environ Resour 2011

• Clearly, innovation is recognized in the eye of the beholder.

• Perspective and context dominate the selection of features related to innovation.

• Where innovation is associated with green chemistry/engineering there are limited tools to evaluate the achievement.

• Contextually, innovation is a process involving idea formation, evaluation, selection, development of technology designed to provide new or improved products with a reduced environmental footprint.

- Green chemistry/engineering is seen as a leading force directing chemical synthesis and production to the innovative design of processes having features sustaining the environment.
- Can the accomplishments of green chemistry/engineering be evaluated in light of the guiding principles to find where innovative success has been attained?

- Guide the search for new green technology opportunities.
- Evaluate the importance of green chemistry/engineering principles to innovation.

Innovation and the Environment

- Emission cost reduction
- Innovation cost and benefits
- Policy influence
 - Technology progress
 - Environmental management
 - Innovation induction
 - Self regulation

Worldwatch Institute 2008 Innovations and the Environment

Eco-compass Driving Eco-innovation

BASF Ecological Fingerprint

Eco-efficiency portfolio

0,3 high eco-efficiency Alternatives Alternative 1 Environmental Impact (normalized) Further Development Alternative 2 Alternative 1 Same user-Alternative 2 benefit Alternative 3 Alternative 4 Alternative 3 Alternative 4 ow eco-efficiency 1,7 1,7 1.0 0,3 Total costs (normalized)

Green Principles

Twelve Principles of Green Chemistry

Twelve Principles of Green Engineering

Prevention	Inherent Rather Than Circumstantial
Atom Economy	Prevention Instead of Treatment
Less Hazardous Chemical Syntheses	Design for Separation
Designing Safer Chemicals	Maximize Efficiency
Safer Solvents and Auxiliaries	Output-Pulled Versus Input-Pushed
Design for Energy Efficiency	Conserve Complexity
Use of Renewable Feedstocks	Durability Rather Than Immortality
Reduce Derivatives	Meet Need, Minimize Excess
Catalysis	Minimize Material Diversity
Design for Degradation	Integrate Material and Energy Flows
Real-time analysis for Pollution Prevention	Design for Commercial "Afterlife"
Inherently Safer Chemistry for Accident Prevention	Renewable Rather Than Depleting

Principles Comparison

Principles of Green Chemistry

- P Prevent wastes
- R Renewable materials
- O Omit derivatization steps
- D Degradable chemical products
- U Use safe synthetic methods
- C Catalytic reagents
- T Temperature, Pressure ambient
- I In-Process Monitoring
- V Very few auxiliary substances
- E E-factor, maximize feed in product
- L Low toxicity of chemical products
- Y Yes it's safe

Principles of Green Engineering

- I Inherently non-hazardous and safe
- M Minimize material diversity
- P Prevention instead of treatment
- R Renewable material and energy inputs
- O Output-led design
- V Very simple
- E Efficient use of mass, energy, space & time
- M Meet the need
- E Easy to separate by design
- N Networks for exchange of local mass & energy
- T Test the life cycle of the design
- S Sustainability throughout product life cycle

Innovation Index Development from Green Chemistry/Engineering

- Material Diversity
- Reaction Control
- Mass Utilization
- Energy
- Safety
- Toxicity
- Waste Prevention

Component Features

Mass utilization

Reduced mass intensity

Recycle options

Efficiency

Availability

Design for degradation

Reaction control

Catalysis

Derivatization control

Process Control

Process intensification

Ambient conditions

Material diversity

Mass Intensity

Recycle options

Efficiency

Availability

Design for degradatiion

Component Features

Energy

Renewable/sustainable

Recycle

Efficient

Minimization of impacts

Generation

Waste prevention

Real-time analysis

Design for degradation

Reduced footprint

Reuse

Regeneration

Toxicity

Ecotoxicity

Human health

Reduced emissions

Reduced product toxicity

No bioaccumulation

Safety

Release minimization

Accident prevention

Inherently safer product

Safe reagent/solvent use

Risk based design

Mapping Innovation

Chemicals from Renewable Feedstocks

- Sustainable chemicals
- Reduced emissions
- Reduced energy use
- Smaller footprint
- Renewable feedstock

- Renewable feedstock
- Energy consumption reduction
- CO2 Sequestration
- Source pollutant reduction
- Downstream separation improvements
- Downstream conversion to environmentally attractive chemical products

I,4-Butanediol Genomatica

Develop an efficient sustainable process utilizing a microorganism in fermentation to form 1,4-butanediol (BDO)

Pathway design components

- Reaction operator management
- Network calculation
- Integration with simulation software
- Pathway tracing
- Pathway ranking and analysis

- Known chemistry and enzyme class selected or designed
- Enhance biopathway predictor database with addition of operators
- Identify secondary metabolites for each reaction operator.

- Identify target compound in simulator database
- Constrain network size
- Calculate network

- Involve secondary metabolite in network reactions.
- Employ balanced reactions.
- Use thermodynamic properties to trace energy flow.
- Identify 'known' biochemical reactions.

Pathway tracing

- Select starting metabolites from calculated network.
- Select maximum pathway length.
- Trace pathways involving selected starting materials to BDO.
- Thermodynamic evaluation of net reactions and pathways.

- Evaluate all pathways for maximum theoretical yield according to the metabolic model.
- Rank pathways using selection criteria.
- Evaluate results in terms of yield and novel reaction steps.

- Established a new biochemical pathway.
- Developed knowledge of metabolite pathways and metabolism.
- Developed a biopathway prediction algorithm.
- Model produced metabolic engineering strategies for balancing energy and redox requirement.
- Optimized two heterologous pathways for BDO production in E. coli.
- Renewable feedstock utilization.

	Material Diversity		Reaction control		Mass Utilization
Х	Mass intensity	Х	Catalysis	Х	Reduced mass intensity
Х	Recycle options		Derivatization control	Х	Recycle options
Х	Efficiency	Х	Process Control	Х	Efficiency
Х	Availability		Process intensification	Х	Availability
	Design for degradation	Х	Ambient conditions		Design for degradation
	Energy		Waste prevention		Safety
Х	Renewable/sustainable		Real-time analysis		Release minimization
	Recycle	Х	Design for degradation		Accident prevention
Х	Efficient		Reduced footprint	Х	Inherently safer product
	Min of impacts	Х	Reuse	Х	Safe reagent/solvent use
	Generation		Regeneration		Risk based design
			Toxicity		
		Х	Ecotoxicity		
			Human health		
			Reduced emissions		
			Reduced product toxicity		
		Х	No bioaccumulation		

Process Development Features

- Designed for maximum utilization of renewable starting material.
- Credits due from coproducts of steam and energy
- Fewer unit operations.
- Smaller plant footprint.
- **Processes engineered for safety.**
- **Recycle streams are significant to process economics.**
- Low particulate emissions.
- Low GHG emissions.
- LCA analyses conducted.

	Material Diversity		Reaction control		Mass Utilization
Х	Mass intensity	Х	Catalysis	Х	Reduced mass intensity
Х	Recycle options		Derivatization control	Х	Recycle options
Х	Efficiency	Х	Process Control	Х	Efficiency
Х	Availability	Х	Process intensification	Х	Availability
Х	Design for degradation	Х	Ambient conditions	Х	Design for degradation
	Energy		Waste prevention		Safety
Х	Renewable/sustainable	Х	Real-time analysis	Х	Release minimization
Х	Recycle	Х	Design for degradation	Х	Accident prevention
Х	Efficient	Х	Reduced footprint	Х	Inherently safer product
Х	Min of impacts	Х	Reuse	Х	Safe reagent/solvent use
Х	Generation	Х	Regeneration	Х	Risk based design
			Toxicity		
		Х	Ecotoxicity		
		Х	Human health		
		Х	Reduced emissions		
		Х	Reduced product toxicity		
		Х	No bioaccumulation		

Measuring Innovation

- New ways to use traditional indicators
- New experimental indicators providing insight into new areas of devoted research.
- Gap and challenge measurement
- Supports a forward looking research agenda

Expected Results

- Increase of new ideas.
- Idea quality improvement.
- Efficient optimization of quality ideas.
- Success derived from the efficient implementation of new ideas.
- Emulation of successful innovation strategies.
- Exploration of green chemistry/engineering principles for new developmental opportunities.

Let Us Meet Again

We welcome you all to our future conferences of OMICS Group International

Please Visit: <u>www.omicsgroup.com</u> <u>www.conferenceseries.com</u> <u>www.pharmaceuticalconferences.com</u>