Localized Regulated Expression of IL-12 as a Gene Therapy Approach to Cancer Immunotherapy

John A. Barrett Ph.D. Ziopharm Oncology, Boston MA 02129

Background & Rationale IL-12 in Oncology

- Tumors grow & escape the immune system through the process of immunoediting. Thus, restoration of the immune system's ability to detect the tumor should result in improved treatment outcomes.
- Localized IL-12 administration has been shown to have antitumor activity that is mediated by direct tumor cell cytotoxicity, and enhancement of immuno-regulatory activities including activation of anti-tumor natural killer (NK) cells, CD4⁺ T cells and CD8⁺ T cells.

Inducible Gene Regulation: RheoSwitch Therapeutic System®

RheoSwitch Therapeutic System® (RTS®) is a 3-component transcriptional regulator

- The Switch Components: The RTS[®] gene program includes 2 receptor protein fusions: VP16-RXR and Gal4-EcR. They form unstable and unproductive heterodimers in the absence of any ligand.
- 2. The Inducible Promoter: A customizable promoter to which basal transcription proteins are recruited and the target gene is transcribed.
- **3.** The Activator Ligand (veledimex): An ecdysone analog, diacylhydrazine-based small molecule functions as an activator. In the presence of the ligand, the protein heterodimer changes to a stable conformation and binds to the inducible promoter.

Regulated intratumoral expression of IL-12 promotes activation of TIL's to drive a cytotoxic immune response against distant tumors

IL-12 Production is Modulated by Activator Ligand in HT 1080 Cells

Dose-Dependent Increase in Expression of Tumor IL-12 mRNA & IL-12 Protein in Response to Veledimex

Ad-RTS-mIL-12 + Veledimex Increases Tumor CD8⁺ & CD4⁺ While Decreasing CD4⁺ Fox P3⁺ TILs in the 4T1 Syngeneic Mouse

Vehicle

Ad-RTS-mIL-12 1 x 10¹⁰ vp + Veledimex 150 mg/m²

Dose-Dependent Anti-Tumor Activity of Ad-RTSmIL-12 + Veledimex (AL) in Murine 4T1 Model

Tumor volume reached 100-200 mm³

Rechallenge Study

Ad-RTS-mIL12 Developed Protective Immunity Against Colon Cancer

(Day 15) Ad-RTS-IL12 RIGHT Flank

(Day 47) Rechallenged with CT26Luc (LEFT Flank

(Day 68) No tumor developed at 21 days post rechallenge

Control animals all developed tumor nodule

5

2

1

3

Clinical Observations to Date

We can control gene expression to achieve a systemic immune response

• High expression of IL-12 mRNA in tumors, tightly controlled by veledimex dose

• Tumor biopsies show increased tumor infiltrating lymphocytes in both injected and systemic non-injected lesions

We have seen systemic and fully reversible toxicity

• Serious adverse events are mechanism-based and consistent with immunotherapy (Fever, N&V, leukopenia, increased LFTs, hyponatremia, cytokine release response)

•Serious adverse events reversed within days after stopping veledimex dosing

•Subjects who have had IL-12 expression turned "off" have been redosed, and IL-12 turned "on" again

Increase in Patient Serum Cytokine Expression Cycle 1

Effects of Ad-RTS-hIL-12 + Veledimex (AL) in Melanoma Patient

- Initial increase in lesion size due to inflammatory response seen at Cycle 1 Day 15
- Lesion was undetectable at Day 30

Higher Veledimex Levels Normal and in GL261 Orthotopic Glioma Mouse Brains

Veledimex levels at 24 hr posttreatment

Effects of Ad-RTS-mIL-12 + Veledimex (AL) in the Orthotopic GL261 Mouse

Normal Mouse

Control Day 20

Treatment For 14 days Day 74 (end of study)

Vehicle BID x 14 Ad-RTS-mIL-12 1x10¹⁰vp + AL 450 mg/m²/day BID x14

Increased Expression of Tumor IL-12 mRNA & **IL-12 Protein in Response to Veledimex**

Tumor & Plasma INXN-1001 Ctrough Day 4

100

50

0-

Ad-RTS-mIL-12 + Veledimex (AL) Results in Increased Survival When Compared to Control in the GL261 Orthotopic Glioma Mouse Model

Ad-RTS-mIL12 administered on Day 5; Veledimex (mg/m²) administered BID for 14 days from Day 5;

Ad-RTS-mIL-12 + veledimex significantly reduces brain cancer stem cells in GL-261 Orthotopic Glioma Model

Nestin levels (marker for cancer stem cells) inverse correlation with survival (Pearson r= 0.92)

Conclusions

- Ad-RTS-hIL-12 + veledimex PO exhibits controllable systemic immune activation in human subjects with melanoma and breast cancer.
- Veledimex exhibits dose-related increases in plasma and brain tissue exposure with no accumulation in brain.
- Ad-RTS-mIL-12 (1x10¹⁰ vp) + veledimex PO improves survival over temozolomide, dexamethasone and bevacizumab.
- Ad-RTS-mIL-12 + veledimex significantly reduces brain cancer stem cells
- These findings support the utility of localized, regulatable IL-12 production as an approach for the treatment of malignant glioma in human subjects.